Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 31 January 2023

Global water resources and the role of groundwater in a resilient water future

  • Bridget R. Scanlon   ORCID: orcid.org/0000-0002-1234-4199 1 ,
  • Sarah Fakhreddine 1 , 2 ,
  • Ashraf Rateb 1 ,
  • Inge de Graaf   ORCID: orcid.org/0000-0001-7748-868X 3 ,
  • Jay Famiglietti 4 ,
  • Tom Gleeson 5 ,
  • R. Quentin Grafton 6 ,
  • Esteban Jobbagy 7 ,
  • Seifu Kebede 8 ,
  • Seshagiri Rao Kolusu 9 ,
  • Leonard F. Konikow 10 ,
  • Di Long   ORCID: orcid.org/0000-0001-9033-5039 11 ,
  • Mesfin Mekonnen   ORCID: orcid.org/0000-0002-3573-9759 12 ,
  • Hannes Müller Schmied 13 , 14 ,
  • Abhijit Mukherjee 15 ,
  • Alan MacDonald   ORCID: orcid.org/0000-0001-6636-1499 16 ,
  • Robert C. Reedy 1 ,
  • Mohammad Shamsudduha 17 ,
  • Craig T. Simmons 18 ,
  • Alex Sun 1 ,
  • Richard G. Taylor 19 ,
  • Karen G. Villholth 20 ,
  • Charles J. Vörösmarty 21 &
  • Chunmiao Zheng   ORCID: orcid.org/0000-0001-5839-1305 22  

Nature Reviews Earth & Environment volume  4 ,  pages 87–101 ( 2023 ) Cite this article

14k Accesses

117 Citations

290 Altmetric

Metrics details

  • Hydrogeology
  • Water resources

An Author Correction to this article was published on 29 March 2023

This article has been updated

Water is a critical resource, but ensuring its availability faces challenges from climate extremes and human intervention. In this Review, we evaluate the current and historical evolution of water resources, considering surface water and groundwater as a single, interconnected resource. Total water storage trends have varied across regions over the past century. Satellite data from the Gravity Recovery and Climate Experiment (GRACE) show declining, stable and rising trends in total water storage over the past two decades in various regions globally. Groundwater monitoring provides longer-term context over the past century, showing rising water storage in northwest India, central Pakistan and the northwest United States, and declining water storage in the US High Plains and Central Valley. Climate variability causes some changes in water storage, but human intervention, particularly irrigation, is a major driver. Water-resource resilience can be increased by diversifying management strategies. These approaches include green solutions, such as forest and wetland preservation, and grey solutions, such as increasing supplies (desalination, wastewater reuse), enhancing storage in surface reservoirs and depleted aquifers, and transporting water. A diverse portfolio of these solutions, in tandem with managing groundwater and surface water as a single resource, can address human and ecosystem needs while building a resilient water system.

Net trends in total water storage data from the GRACE satellite mission range from −310 km 3 to 260 km 3 total over a 19-year record in different regions globally, caused by climate and human intervention.

Groundwater and surface water are strongly linked, with 85% of groundwater withdrawals sourced from surface water capture and reduced evapotranspiration, and the remaining 15% derived from aquifer depletion.

Climate and human interventions caused loss of ~90,000 km 2 of surface water area between 1984 and 2015, while 184,000 km 2 of new surface water area developed elsewhere, primarily through filling reservoirs.

Human intervention affects water resources directly through water use, particularly irrigation, and indirectly through land-use change, such as agricultural expansion and urbanization.

Strategies for increasing water-resource resilience include preserving and restoring forests and wetlands, and conjunctive surface water and groundwater management.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

92,52 € per year

only 7,71 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

water resources research paper

Similar content being viewed by others

water resources research paper

Environmental flow limits to global groundwater pumping

Inge E. M. de Graaf, Tom Gleeson, … Marc F. P. Bierkens

water resources research paper

Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers

Wen-Ying Wu, Min-Hui Lo, … Zong-Liang Yang

water resources research paper

Groundwater recharge is sensitive to changing long-term aridity

Wouter R. Berghuijs, Raoul A. Collenteur, … Scott T. Allen

Change history

29 march 2023.

A Correction to this paper has been published: https://doi.org/10.1038/s43017-023-00418-9

Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467 , 555–561 (2010).

Article   Google Scholar  

Doell, P., Mueller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50 , 5698–5720 (2014).

Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37 , L20402 (2010).

Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (IPCC, Cambridge Univ. Press, 2021).

Olivier, D. W. & Xu, Y. X. Making effective use of groundwater to avoid another water supply crisis in Cape Town, South Africa. Hydrogeol. J. 27 , 823–826 (2019).

Ozment, S. et al. Natural infrastructure in Sao Paulo’s water system. World Resources Institute Report 2013–2014: Interim Findings (2018).

Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town ‘Day Zero’ drought in the 21st century. Proc. Natl Acad. Sci. USA 117 , 29495 (2020).

Alley, W. M., Reilly, T. E. & Franke, O. L. Sustainability of ground-water resources. US Geological Survey Circular 1186 (1999).

Breslin, S. COP26 has 4 goals. Water is central to all of them. SIWI News https://siwi.org/latest/cop26-has-4-goals-water-is-central-to-all-of-them/ (2021).

Global Risks 2021 16th edition (World Economic Forum, 2021); https://www.weforum.org/reports/the-global-risks-report-2021/

The Water Challenge: The Roundtable on Water Financing (OECD, 2022); https://www.oecd.org/water/roundtable-on-financing-water.htm

The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (United Nations World Water Assessment Program/UNESCO, 2018).

Browder, G., Ozment, S., Rehberger-Bescos, I., Gartner, T. & Lange, G. M. Integrating Green and Gray: Creating Next Generation Infrastructure (World Bank and World Resources Institute, 2019); https://openknowledge.worldbank.org/handle/10986/31430

Making Every Drop Count: Agenda for Water Action (High Level Panel on Water, United Nations and World Bank, 2018).

Lederer, E. M. Next UN assembly president warns world in dangerous crisis. Washington Post https://www.washingtonpost.com/world/next-un-assembly-president-warns-world-in-dangerous-crisis/2022/06/07/55075dce-e6b6-11ec-a422-11bbb91db30b_story.html (7 June 2022).

Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9 , 358–369 (2019).

Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/10/104003 (2014).

Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1 , 792–800 (2020).

Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557 , 651–659 (2018).

Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121 , 7547–7569 (2016).

Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The Gravity Recovery And Climate Experiment: mission overview and early results. Geophys. Res. Lett. https://doi.org/10.1029/2004gl019920 (2004).

Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51 , 5217–5238 (2015).

Shamsudduha, M. & Taylor, R. G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth Syst. Dyn. 11 , 755–774 (2020).

Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R. M. & Bamber, J. L. Re-assessing global water storage trends from GRACE time series. Environ. Res. Lett. 16 , 034005 (2021).

Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540 , 418–436 (2016).

Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9 , 494–502 (2011).

Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115 , E1080–E1089 (2018).

Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground Water and Surface Water: A Single Resource . Circular 1139 (United States Geological Survey, 1998).

Konikow, L. F. Overestimated water storage. Nat. Geosci. 6 , 3 (2013).

Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. https://doi.org/10.1029/2011gl048604 (2011).

Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5 , 389–392 (2012).

de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resour. 102 , 53–67 (2017).

Rateb, A. et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers. Water Resour. Res. https://doi.org/10.1029/2020WR027556 (2020).

de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574 , 90–94 (2019).

Sophocleous, M. From safe yield to sustainable development of water resources — the Kansas experience. J. Hydrol. 235 , 27–43 (2000).

Konikow, L. F. & Bredehoeft, J. D. Groundwater Resource Development: Effects and Sustainability (The Groundwater Project, 2020).

MacAllister, D. J., Krishan, G., Basharat, M., Cuba, D. & MacDonald, A. M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. https://doi.org/10.1038/s41561-022-00926-1 (2022).

Scanlon, B. R. et al. Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac16ff (2021).

McGuire, V. L. Water-Level and Recoverable Water In Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013–15 . US Geological Survey Scientific Investigations Report 2017–5040 (2017); https://doi.org/10.3133/sir20175040

Faunt, C. C. Groundwater availability of the Central Valley Aquifer, California. US Geol. Surv. Prof. Pap . 1766 (2009).

Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289 , 284–288 (2000).

Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. https://doi.org/10.1126/sciadv.1500323 (2016).

Vorosmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50 , 753–765 (2000).

Gronwall, J. & Danert, K. Regarding groundwater and drinking water access through a human rights lens: self-supply as a norm. Water https://doi.org/10.3390/w12020419 (2020).

van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbfc3 (2021).

Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368 , 845–850 (2020).

Yapiyev, V., Sagintayev, Z., Inglezakis, V. J., Samarkhanov, K. & Verhoef, A. Essentials of endorheic basins and lakes: a review in the context of current and future water resource management and mitigation activities in Central Asia. Water https://doi.org/10.3390/w9100798 (2017).

Pauloo, R. A., Fogg, G. E., Guo, Z. L. & Harter, T. Anthropogenic basin closure and groundwater salinization (ABCSAL). J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125787 (2021).

Cao, T. Z., Han, D. M. & Song, X. F. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126844 (2021).

Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51 , 3–26 (2013).

Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19 , 5686–5699 (2006).

Fan, X., Duan, Q. Y., Shen, C. P., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15 , 104056 (2020).

Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. https://doi.org/10.1038/s41598-020-70816-2 (2020).

Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368 , 314 (2020).

Arias, P. A. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 33−144 (IPCC, Cambridge Univ. Press, 2021).

van Dijk, A. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49 , 1040–1057 (2013).

Scanlon, B. R. et al. Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resour. Res. 51 , 9891–9903 (2015).

Rateb, A., Scanlon, B. R. & Kuo, C. Y. Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144337 (2021).

Anyamba, A., Glennie, E. & Small, J. Teleconnections and interannual transitions as observed in African vegetation: 2015–2017. Remote Sens. https://doi.org/10.3390/rs10071038 (2018).

Scanlon, B. R. et al. Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac3bfc (2022).

Ul Hassan, W. & Nayak, M. A. Global teleconnections in droughts caused by oceanic and atmospheric circulation patterns. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abc9e2 (2021).

Shen, Z. X. et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nat. Commun. 13 , 1849 (2022).

Dettinger, M. D. Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeorol. 14 , 1721–1732 (2013).

Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3 , 322–329 (2013).

Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572 , 230 (2019).

Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592 , 726 (2021).

Zhao, F., Long, D., Li, X., Huang, Q. & Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote. Sens. Environ. 270 , 112853 (2022).

Li, X. Y. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01443-0 (2022).

Yao, T. D. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).

Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328 , 1382–1385 (2010).

Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577 , 364 (2020).

Dery, S. J. et al. Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res. https://doi.org/10.1029/2008wr006975 (2009).

Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 7 , 3977–4021 (2010).

Google Scholar  

Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109 , 9320–9325 (2012).

Dahlke, H. E. et al. in Advanced Tools for Integrated Water Resources Management Vol. 3 (eds Friesen, J. & Rodriguez-Sinobas, L.) 215–275 (Elsevier, 2018).

Reddy, V. R., Pavelic, P. & Hanjra, M. A. Underground taming of floods for irrigation (UTFI) in the river basins of South Asia: institutionalising approaches and policies for sustainable water management and livelihood enhancement. Water Policy 20 , 369–387 (2018).

McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113 , 9117–9122 (2016).

The State of the World’s Forests 2020. Forests, Biodiversity, and Peopl e (FAO/UNEP, 2020).

Convention on Wetlands. Global Wetland Outlook: Special Edition 2021 (Secretariat of the Convention on Wetlands, 2021).

Scanlon, B. R., Jolly, I., Sophocleous, M. & Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour. Res. https://doi.org/10.1029/2006WR005486 (2007).

Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbagy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206 , 60–70 (2015).

Favreau, G. et al. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour. Res. https://doi.org/10.1029/2007wr006785 (2009).

Walker, C. D., Zhang, l, Ellis, T. W., Hatton, T. J. & Petheram, C. Estimating impacts of changed land use on recharge: review of modelling and other approaches appropriate for management of dryland salinity. Hydrogeol. J. 10 , 68–90 (2002).

Nosetto, M. D., Jobbagy, E. G., Jackson, R. B. & Sznaider, G. A. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Res. 113 , 138–148 (2009).

Gimenez, R., Mercau, J., Nosetto, M., Paez, R. & Jobbagy, E. The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrol. Process. 30 , 2603–2616 (2016).

Eilers, R. G., Eilers, W. D. & Fitzgerald, M. M. A salinity risk index for soils of the Canadian prairies. Hydrogeol. J. 5 , 68–79 (1997).

Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs (WHO/UNICEF, 2021).

Cobbing, J. & Hiller, B. Waking a sleeping giant: realizing the potential of groundwater in sub-Saharan Africa. World Dev. 122 , 597–613 (2019).

Rockström, J. & Falkenmark, M. Agriculture: increase water harvesting in Africa. Nature 519 , 283–285 (2015).

MacAllister, D. J., MacDonald, A. M., Kebede, S., Godfrey, S. & Calow, R. Comparative performance of rural water supplies during drought. Nat. Commun. 11 , 1099 (2020).

Aboah, M. & Miyittah, M. K. Estimating global water, sanitation, and hygiene levels and related risks on human health, using global indicators data from 1990 to 2020. J. Water Health 20 , 1091–1101 (2022).

Abell, R. et al. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection (The Nature Conservancy, 2017).

Herrera-Garcia, G. et al. Mapping the global threat of land subsidence. Science 371 , 34–36 (2021).

Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11 , 035013 (2016).

Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 44 , 40–51 (2020).

Water Reuse within a Circular Economy Context . Global Water Security Issues Series 2 (UNESCO, 2020).

Jones, E. R., van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13 , 237–254 (2021).

Jeuland, M. Challenges to wastewater reuse in the Middle East and North Africa. Middle East. Dev. J. 7 , 1–25 (2015).

Zhang, Y. & Shen, Y. Wastewater irrigation: past, present, and future. WIREs Water 6 , e1234 (2019).

Fito, J. & Van Hulle, S. W. H. Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability. Environ. Dev. Sust. 23 , 2949–2972 (2021).

Gao, L., Yoshikawa, S., Iseri, Y., Fujimori, S. & Kanae, S. An economic assessment of the global potential for seawater desalination to 2050. Water https://doi.org/10.3390/w9100763 (2017).

Ahdab, Y. D., Thiel, G. P., Bohlke, J. K., Stanton, J. & Lienhard, J. H. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets. Water Res. 141 , 387–404 (2018).

Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657 , 1343–1356 (2019).

Lin, S. S. et al. Seawater desalination technology and engineering in China: a review. Desalination https://doi.org/10.1016/j.desal.2020.114728 (2021).

Martinez-Alvarez, V., Martin-Gorriz, B. & Soto-Garcia, M. Seawater desalination for crop irrigation — a review of current experiences and revealed key issues. Desalination 381 , 58–70 (2016).

Smith, K., Liu, S. M., Hu, H. Y., Dong, X. & Wen, X. H. Water and energy recovery: the future of wastewater in China. Sci. Total Environ. 637 , 1466–1470 (2018).

Pulido-Bosch, A. et al. Impacts of agricultural irrigation on groundwater salinity. Environ/ Earth Sci. https://doi.org/10.1007/s12665-018-7386-6 (2018).

Kurnik, J. The Next California: Phase 1: Investigating Potential in the Mid-Mississippi Delta River Region (The Markets Institute at WWF, 2020); https://www.worldwildlife.org/publications/the-next-california-phase-1-investigating-potential-in-the-mid-mississippi-delta-river-region

Senay, G. B., Schauer, M., Friedrichs, M., Velpuri, N. M. & Singh, R. K. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sens. Environ. 202 , 98–112 (2017).

Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s Central Valley? Prices or concern for water? Remote Sens. https://doi.org/10.3390/rs13040650 (2021).

Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security — a global analysis. Environ. Res. Lett. 8 , 024030 (2013).

Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2020.106122 (2020).

Colaizzi, P. D., Gowda, P. H., Marek, T. H. & Porter, D. O. Irrigation in the Texas High Plains: a brief history and potential reductions in demand. Irrig. Drain. 58 , 257–274 (2008).

Scanlon, B. R., Gates, J. B., Reedy, R. C., Jackson, A. & Bordovsky, J. Effects of irrigated agroecosystems: (2). Quality of soil water and groundwater in the southern High Plains, Texas. Water Resour. Res. 46 , W09538 (2010).

Ward, F. A. & Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl Acad. Sci. USA 105 , 18215–18220 (2008).

Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361 , 748–750 (2018).

Alcott, B. in The Jevons Paradox and the Myth of Resource Efficiency Improvements (eds Polimeni, J. M., Mayumi, K., & Giampetro, M.) 7–78 (Earthscan, 2008).

Aarnoudse, E. & Bluemling, B. Controlling Groundwater Through Smart Card Machines: The Case of Water Quotas and Pricing Mechanisms in Gansu Province, China . Groundwater Solutions Initiative for Policy and Practice (GRIPP) Case Profile Series 02 (International Water Management Institute, 2017); https://doi.org/10.5337/2016.224

Kinzelbach, W., Wang, H., Li, Y., Wang, L. & Li, N. Groundwater Overexploitation in the North China Plain: A Path to Sustainability (Springer, 2021).

McDougall, R., Kristiansen, P. & Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl Acad. Sci. USA 116 , 129–134 (2019).

Langemeyer, J., Madrid-Lopez, C., Mendoza Beltran, A. & Villalba Mendez, G. Urban agriculture — a necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 210 , 104055 (2021).

Palmer, L. Urban agriculture growth in US cities. Nat. Sust. 1 , 5–7 (2018).

Grafius, D. R. et al. Estimating food production in an urban landscape. Sci. Rep. 10 , 5141 (2020).

The State of Food Insecurity in the World 2015 (FAO/IFAD/WFP, 2015).

Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438 , 477–489 (2012).

Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302 , 1524–1528 (2003).

Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture — Sustainable Management and Conservation of Land, Water, and Biodiversity (FAO/The Nature Conservancy, 2021).

McDonald, R. I. & Shemie, D. Urban Water Blueprint: Mapping Conservation Solutions to the Global Water Challenge (The Nature Conservancy, 2014); http://water.nature.org/waterblueprint

Kane, M. & Erickson, J. D. Urban metabolism and payment for ecosystem services: history and policy analysis of the New York city water supply. Adv. Econ. Environ. Resour. 7 , 307–328 (2007).

Greater Cape Town Water Fund: Business Case: Assessing the Return on Investment for Ecological Infrastructure Restoration (The Nature Conservancy, 2019).

Hu, J., Lu, Y. H., Fu, B. J., Comber, A. J. & Harris, P. Quantifying the effect of ecological restoration on runoff and sediment yields: a meta-analysis for the Loess Plateau of China. Prog. Phys. Geogr. Earth Environ. 41 , 753–774 (2017).

Liu, W. W. et al. Improving wetland ecosystem health in China. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2020.106184 (2020).

Cities100: Chennai Is Restoring Waterbodies to Protect Against Flooding and Drought . C40 Knowledge Hub: Nordic Sustainability, South and West Asia, Chennai, Case Studies and Best Practice Examples https://www.c40knowledgehub.org/s/article/Cities100-Chennai-is-restoring-waterbodies-to-protect-against-flooding-and-drought?language=en_US (2019).

Chung, M. G., Frank, K. A., Pokhrel, Y., Dietz, T. & Liu, J. G. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sust. 4 , 1068 (2021).

Qi, Y. F. et al. Addressing challenges of urban water management in Chinese sponge cities via nature-based solutions. Water https://doi.org/10.3390/w12102788 (2020).

Acreman, M. et al. Evidence for the effectiveness of nature-based solutions to water issues in Africa. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0210 (2021).

Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10 , 452–458 (2020).

Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7 , 31 (2020).

International Commission on Large Dams https://www.icold-cigb.org/ (2022).

Yang, G., Guo, S., Liu, P. & Block, P. Integration and evaluation of forecast-informed multiobjective reservoir operations. J. Water Resour. Plan. Manag. 146 , 04020038 (2020).

Delaney, C. J. et al. Forecast informed reservoir operations using ensemble streamflow predictions for a multipurpose reservoir in northern California. Water Resour. Res . https://doi.org/10.1029/2019wr026604 (2020).

Amarasinghe, U. A., Muthuwatta, L., Surinaidu, L., Anand, S. & Jain, S. K. Reviving the Ganges water machine: potential. Hydrol. Earth Syst. Sci. 20 , 1085–1101 (2016).

Shamsudduha, M. et al. The Bengal water machine: quantified freshwater capture in Bangladesh. Science 377 , 1315–1319 (2022).

Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320 , 212–214 (2008).

Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77 , 161–170 (2015).

Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. https://doi.org/10.1038/s41598-019-54980-8 (2019).

Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E. & Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. https://doi.org/10.1038/s41467-020-19089-x (2020).

Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sust. 1 , 617–622 (2018).

Dahlke, H. E., Brown, A. G., Orloff, S., Putnam, D. & O’Geen, T. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. Calif. Agric. 72 , 65–75 (2018).

Yang, Q. & Scanlon, B. R. How much water can be captured from flood flows to store in depleted aquifers for mitigating floods and droughts? A case study from Texas, US. Environ. Res. Lett. 14 , 054011 (2019).

Dillon, P. et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. https://doi.org/10.1007/s10040-018-1841-z. (2018).

Groundwater Replenishment System Technical Brochure, https://www.ocwd.com/media/10443/gwrs-technical-brochure-2021.pdf (2021).

Konikow, L. F. Groundwater Depletion in the United States (1900–2008) . US Geological Survey Scientific Investigation Report 2013–5079, http://pubs.usgs.gov/sir/2013/5079 (2013).

Hartog, N. & Stuyfzand, P. J. Water quality donsiderations on the rise as the use of managed aquifer recharge systems widens. Water 9 , 808 (2017).

Shumilova, O., Tockner, K., Thieme, M., Koska, A. & Zarfl, C. Global water transfer megaprojects: a potential solution for the water–food–energy nexus? Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00150 (2018).

Long, D. et al. South-to-north water diversion stabilizing Beijing’s groundwater levels. Nat. Commun. https://doi.org/10.1038/s41467-020-17428-6 (2020).

Zhuang, W. Eco-environmental impact of inter-basin water transfer projects: a review. Environ. Sci. Pollut. Res. 23 , 12867–12879 (2016).

Hoekstra, A. Y. Virtual Water Trade : Proceedings of the International Expert Meeting on Virtual Water Trade (UNESCO-IHE, 2003).

Oki, T. & Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 49 , 203–209 (2004).

Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. https://doi.org/10.1038/s41467-021-22194-0 (2021).

Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109 , 3232–3237 (2012).

Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543 , 700–704 (2017).

Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384 , 232–244 (2010).

Mekonnen, M. M. & Gerbens-Leenes, W. The water footprint of global food production. Water https://doi.org/10.3390/w12102696 (2020).

Australian Water Markets Report: 2019-20 Review and 2020-21 Outlook (Aither, 2020); https://aither.com.au/wp-content/uploads/2020/08/2020-Water-Markets-Report.pdf

Grafton, R. Q. & Wheeler, S. A. Economics of water recovery in the Murray–Darling Basin, Australia. Annu. Rev. Resour. Econ. 10 , 487–510 (2018).

Moench, M. Water and the potential for social instability: livelihoods, migration and the building of society. Nat. Resour. Forum 26 , 195–204 (2002).

Water Markets in Australia: A Short History (National Water Commission, 2011).

Kundzewicz, Z. W. & Döll, P. Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 54 , 665–675 (2009).

A Snapshot of the World’s Water Quality: Towards a Global Assessment (UNEP, 2016).

Summary Progress Update 2021: SDG 6 — Water and Sanitation for All (UN-Water, 2021).

GEMStat: Global Environmental Monitoring System, https://gemstat.org/ (UNEP, 2022).

Akhmouch, A. & Correia, F. N. The 12 OECD principles on water governance — when science meets policy. Util. Policy 43 , 14–20 (2016).

Lankford, B., Bakker, K., Zeitoun, M. & Conway, B. D. Water Security: Principles, Perspectives, and Practices (Routledge, 2013).

Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3 , 19 (2022).

Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339 , 940–943 (2013).

Download references

Author information

Authors and affiliations.

Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA

Bridget R. Scanlon, Sarah Fakhreddine, Ashraf Rateb, Robert C. Reedy & Alex Sun

Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Sarah Fakhreddine

Water Systems and Global Change, Wageningen University, Wageningen, The Netherlands

Inge de Graaf

Global Institute for Water Security, National Hydrology Research Center, University of Saskatchewan, Saskatoon, Canada

Jay Famiglietti

Department of Civil Engineering, University of Victoria, Victoria, British Columbia, Canada

Tom Gleeson

Crawford School of Public Policy, Australian National University, Canberra, ACT, Australia

R. Quentin Grafton

Grupo de Estudios Ambientales, IMASL, CONICET, Universidad Nacional de San Luis, San Luis, Argentina

Esteban Jobbagy

Center for Water Resources Research, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu Natal, Durban, South Africa

Seifu Kebede

UK Meteorological Office, Exeter, UK

Seshagiri Rao Kolusu

Leonard Konikow Hydrogeologist, Reston, VA, USA

Leonard F. Konikow

Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA

Mesfin Mekonnen

Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Frankfurt, Germany

Hannes Müller Schmied

Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Frankfurt, Germany

School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Abhijit Mukherjee

British Geological Survey, Lyell Centre, Edinburgh, UK

Alan MacDonald

Institute for Risk and Disaster Reduction, University College London, London, UK

Mohammad Shamsudduha

National Centre for Groundwater Research and Training (NCGRT), College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia

Craig T. Simmons

Department of Geography, University College London, London, UK

Richard G. Taylor

Water Cycle Innovation Ltd, Johannesburg, Gauten, South Africa

Karen G. Villholth

Environmental Sciences Initiative, Advanced Science Research Center at the CUNY Graduate Center, New York, NY, USA

Charles J. Vörösmarty

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Chunmiao Zheng

You can also search for this author in PubMed   Google Scholar

Contributions

B.R.S. conceptualized the review and coordinated input. S.F. reviewed many of the topics and developed some of the figures. A.R. analysed GRACE satellite data and M.S. reviewed this output. Q.G. provided input on water economics. E.J. reviewed impacts of land-use change. S.R.K. provided data on future precipitation changes. L.F.K. provided detailed information on surface water/groundwater interactions. M.M. provided data on water trade. C.J.V. provided input on green and grey solutions. All authors reviewed the paper and provided edits.

Corresponding author

Correspondence to Bridget R. Scanlon .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Earth & Environment thanks Helen Dahlke, Diana Allen, who co-reviewed with Aspen Anderson, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, supplementary tables , rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Scanlon, B.R., Fakhreddine, S., Rateb, A. et al. Global water resources and the role of groundwater in a resilient water future. Nat Rev Earth Environ 4 , 87–101 (2023). https://doi.org/10.1038/s43017-022-00378-6

Download citation

Accepted : 17 November 2022

Published : 31 January 2023

Issue Date : February 2023

DOI : https://doi.org/10.1038/s43017-022-00378-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Rapid groundwater decline and some cases of recovery in aquifers globally.

  • Scott Jasechko
  • Hansjörg Seybold
  • James W. Kirchner

Nature (2024)

Winter snow deficit was a harbinger of summer 2022 socio-hydrologic drought in the Po Basin, Italy

  • Francesco Avanzi
  • Francesca Munerol
  • Luca Ferraris

Communications Earth & Environment (2024)

Development of Groundwater Levels Dataset for Chile since 1970

  • Héctor Leopoldo Venegas-Quiñones
  • Rodrigo Valdés-Pineda
  • Ty P. A. Ferré

Scientific Data (2024)

Comparative life cycle assessment of environmental impacts and economic feasibility of tomato cultivation systems in northern plains of India

  • Rohit Kumar
  • Arvind Bhardwaj
  • Kanhu Charan Pattnayak

Scientific Reports (2024)

Aquifer depletion exacerbates agricultural drought losses in the US High Plains

  • Timothy Foster
  • Nicholas Brozović

Nature Water (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

water resources research paper

Runoff transformation under the effect of landscape changes in the Moskva R. Basin and in the territory of Moscow City

  • Water Resources and the Regime of Water Bodies
  • Published: 19 March 2015
  • Volume 42 , pages 159–169, ( 2015 )

Cite this article

  • N. I. Koronkevich 1 &
  • K. S. Mel’nik 1  

101 Accesses

5 Citations

Explore all metrics

An attempt is made to assess the hydrological role of landscape changes in the Moskva R. Basin and in the territory of Moscow City, starting from the mid-XX century until now. Special attention is paid to the hydrological role of urban territories. Changes in the runoff of surface, infiltration origin and full river runoff are reflected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

water resources research paper

Changes in Moskva R. runoff under anthropogenic impacts

N. I. Koronkevich & K. S. Mel’nik

water resources research paper

The Zones of Influence of Surface Flow in the System of Urban Nature Management: Case Study of Moscow Territory

E. A. Karfidova, G. I. Batrak, … S. N. Polevodova

Modern Hydrological Changes in the Moskva River Basin

N. I. Koronkevich, E. A. Kashutina, … K. V. Luk’yanov

Babina, Yu.V., Dynamics of the areas of transformed nonagricultural landscapes in European Russia, in Izmenenie prirodnoi sredy Rossii v KhKh veke (Enviromental Changes in Russia in the XX Century), Moscow: Molnet, 2012, pp. 71–85.

Google Scholar  

Bass, S.V., Vnutrizonal’nye osobennosti vesennego poverkhnostnogo stoka v lesnoi zone (Zonal Features of Spring Surface Runoff in the Forest Zone), Moscow: AN SSSR, 1963.

Vliyanie urbanizatsii na gidrologicheskii rezhim i kachestvo vody. Metodicheskoe posobie (Effect of Urbanization on the Hydrological Regime and Water Quality. Textbook), St. Petersburg: Gidrometeoizdat, 1991.

Vodnye resursy Rossii i ikh ispol’zovanie (Water Resources in Russia and Their Use), St. Petersburg: GGI, 2008.

Voenno-statisticheskoe obozrenie Rossiiskoi imperii. T. 6. Ch. 1. Moskovskaya guberniya (Military-Statistical Review of the Russian Empire, Vol. 6, Part 1. Moscow Guberniya), St. Petersburg: Izd. departamenta general’nogo shtaba, 1853.

Voskresenskii, K.P., Norma i izmenchivost’ godovogo stoka rek Sovetskogo Soyuza (Normal Annual Runoff of Rivers in the Soviet Union and Its Variations), Leningrad: Gidrometeoizdat, 1962.

Grin, A.M., Dinamika vodnogo balansa Tsentral’no-Chernozemnogo raiona (Water Balance Dynamics in the Central Chernozem Region), Moscow: Nauka, 1965.

Doklad o sostoyanii okruzhayushchei sredy v g. Moskve v 2011 godu (Report on the State of the Environment in Moscow in 2011), Moscow: Spetskniga, 2012.

Zakharov, M.P., Putevoditel’ po Moskve i ukazanie ee dostoprimechatel’nostei (Guide on Moscow and Its Places of Interest), Moscow: Tipograf. Vedomosti Moskovskoi gor. politsii, 1856.

Koronkevich, N.I., Vodnyi balans Russkoi ravniny i ego antropogennye izmeneniya (Water Balance of the Russian Plain and Its Anthropogenic Changes), Moscow: Nauka, 1990.

Kupriyanov, V.V., Gidrologicheskie aspekty urbanizatsii (Hydrological Aspects of Urbanization), Leningrad: Gidrometeoizdat, 1977.

Kurbatova, A.S., Landshaftno-ekologicheskie osnovy formirovaniya gradostroitel’nykh struktur (Landscape-Environmental Principles of Town-Building Structures), Moscow: Madzhenta, 2004.

Likhacheva, E.A. and Smirnova, E.B., Ekologicheskie problemy Moskvy za 150 let (Environmental Problems of Moscow over 150 Years), Moscow, 1994.

L’vovich, M.I., Voda i zhizn’ (Water and Life), Moscow: Mysl’, 1986.

L’vovich, M.I. and Chernogaeva, G.M., Changes in water balance of a territory under the effect of urbanization, in Problemy gidrologii (Problems of Hydrology), Moscow: AN SSSR, 1978, pp. 43–52.

L’vovich, M.I. and Chernyshev, E.P., Regularities in water balance and matter exchange under urban conditions, Izv. Akad. Nauk SSSR, Ser. Geogr. , 1983, no. 3, pp. 23–29.

Moskva v tsifrakh. 1939 god: Stat. ezhegodnik (Moscow Numerically. Year 1939: Statistical Yearbook), Moscow: Finansy i statistika, 1939.

Moskva v tsifrakh. 1985 god: Stat. ezhegodnik (Moscow Numerically. Year 1985: Statistical Yearbook), Moscow: Finansy i statistika, 1985.

Naselennye mestnosti Moskovskoi gubernii. Prilozhenie k pamyatnoi knizhki Moskovskoi gubernii na 1912 g (Populated Areas in Moscow Guberniya. Appendix to the Agenda Book for Moscow Guberniya over year of 1912), Moscow: Izd. Moskovskogo stolichnogo i Gubernskogo stat. kom., 1911.

SNiP 2.04.03-85. Kanalizatsiya. Naruzhnye seti i sooruzheniya. Minstroi Rossii (SNiP 2.04.03-85. Sewarage. Public Utilities. Ministry of Construction), Moscow: GUP TsPP, 1996.

Statisticheskii spravochnik po naselennym mestam Moskovskoi gubernii. Po materialam Vsesoyuznoi perepisi naseleniya 1926 (Statistical Reference Book on Populated Localities of Moscow Guberniya. According to Materials of All-Union Population Census of Year 1926), Moscow: Izd. Moskovskogo stat. otd, 1929.

Statisticheskii spravochnik goroda Moskvy i Moskovskoi gubernii 1927 god (Statistical Reference Book on Moscow City and Moscow Guberniya for Year 1927), Moscow: Izd. Moskovskogo stat. otd, 1928.

Statisticheskoe upravlenie narodno-khozyaistvennogo ucheta Gosplana SSSR. Sektor ucheta gorodskogo khozyaistva. Kommunal’noe khozyaistvo SSSR k kontsu pervoi pyatiletki. (Sb. stat. materialov za 1927/28-31 gg. v sopostavlenii s dorevolyutsionnymi) (Statistical Administration of National Accounting of USSR State Planning Committee. Sector of Municipal Accounting. Municipal Economy of the USSR by the End of the First Five-Year Plan (Coll. of Stat. Materials for 1927/28-31 Compared with the Pre-Revolution Level), Moscow, 1935.

Subbotin, A.I., Stok talykh i dozhdevykh vod (po eksperimental’nym dannym) (Snowmelt and Rainwater Runoff (by Experimental Data)), Moscow: Gidrometeoizdat, 1966.

Subbotin, A.I., Dygalo V.S. Eksperimental’nye gidrologicheskie issledovaniya v basseine reki Moskvy (Experimental Hydrological Studies in the Moskva Basin), Moscow: Gidrometeoizdat, 1991.

Tsvetkov, M.A., Izmenenie lesistosti Evropeiskoi Rossii s kontsa XVII stoletiya po 1914 god (Changes in the Forest Percentage in European Russia Since the Late XVII century up to 1914), Moscow: AN SSSR, 1957.

Chernogaeva, G.M., Hydrological role of urbanization: case study of Moscow, in Vopr. geografii (Issues of Geography), Moscow: Mysl’, 1976, pp. 179–184.

Download references

Author information

Authors and affiliations.

Institute of Geography, Russian Academy of Sciences, Staromonentyi per. 29, Moscow, 119017, Russia

N. I. Koronkevich & K. S. Mel’nik

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to N. I. Koronkevich .

Additional information

Original Russian Text © N.I. Koronkevich, K.S. Mel’nik, 2015, published in Vodnye Resursy, 2015, Vol. 42, No. 2, pp. 133–143.

Rights and permissions

Reprints and permissions

About this article

Koronkevich, N.I., Mel’nik, K.S. Runoff transformation under the effect of landscape changes in the Moskva R. Basin and in the territory of Moscow City. Water Resour 42 , 159–169 (2015). https://doi.org/10.1134/S0097807815020062

Download citation

Received : 25 March 2014

Published : 19 March 2015

Issue Date : March 2015

DOI : https://doi.org/10.1134/S0097807815020062

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • landscape structure
  • urban territories
  • surface runoff and runoff of infiltration origin from individual landscape elements
  • winter-spring and summer-autumn seasons
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) A Review Paper on Water Resource Management

    water resources research paper

  2. Hydrogeochemical Study and Geospatial Analysis of Water Quality Using

    water resources research paper

  3. Water Environment Research Impact Factor Leaps Ahead by 50%

    water resources research paper

  4. Water Resources Research Template

    water resources research paper

  5. (PDF) Integrating Water‐Quality into a Water Resources Research Agenda

    water resources research paper

  6. Integrated Water Resources Research

    water resources research paper

VIDEO

  1. Water justice: recognizing different needs and practices

  2. Google Earth Engine (basics 1)

  3. Water resources engineering || question paper Batu University

  4. water resources management quation paper 2020

  5. Open Access with Georgia Destouni

  6. PFAS Forum

COMMENTS

  1. Water Resources Research

    Online ISSN: 1944-7973. Print ISSN: 0043-1397. Water Resources Research is an open access journal that publishes original research articles and commentaries on hydrology, water resources, and the social sciences of water that provide a broad understanding of the role of water in Earth's system. Water Resources Research is now a fully open ...

  2. (PDF) Global Water resources

    Abstract. Water resources are sources of water that are useful or potentially useful to humans. Uses of water include agricultural, industrial, household, recreational and environmental activities ...

  3. Global water resources and the role of groundwater in a ...

    Center for Water Resources Research, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu Natal, Durban, South Africa ... All authors reviewed the paper and provided edits.

  4. Hydrological cycle and water resources in a changing world: A review

    In this paper, we review the current status and existing issues of hydrological cycle and water resource research in the context of global climate change. We discuss the major challenges, key scientific issues and potential future research directions that need to be addressed in the future. 2. Current research status.

  5. Water Resources and Economics

    Water Resources and Economics is one of a series of specialist titles launched by the highly-regarded Water Research. The journal is targeted at economists, engineers, natural and social scientists interested in water resources management. Papers should deal with the changing value of water in its different uses and the evaluation of economic ...

  6. Water Research

    In association with the International Water Association Water Research has an open access companion journal Water Research X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Water Research publishes refereed, original research papers on all aspects of the science and technology of the anthropogenic water cycle, water quality, and its management ...

  7. Water‐Use Data in the United States ...

    Paper No. JAWR-21-0080-C of the Journal of the American Water Resources Association (JAWR). ... In the United States (U.S.), water resources management is generally conducted at a local or regional level, with fragmented data collected for where and who uses water and the volumes used. ... the USGS Water-Use Data and Research (WUDR) Program was ...

  8. Home

    Water Resources is a peer-reviewed journal focused on the assessment and use of water resources, their quality, and protection. Covers a broad range of research areas, including physical, dynamic, chemical, and biological phenomena that occur within or involve water. Encompasses research related to the prediction of variations in continental ...

  9. (PDF) Water Resources Management and Sustainability

    Abstract. Water is the elixir of life and is crucial for sustainable development. Earlier, it was considered to be a limitless or at least a fully renewable natural resource. During the past 20 ...

  10. Home

    Overview. Sustainable Water Resources Management publishes articles that deal with the interface of water resources science and the needs of human populations, highlighting work that addresses practical methods and basic research on water resources management. Covers a broad range of topics in water resources management.

  11. Water resources research to support a sustainable China

    The issue includes five papers, whose topics range from flash flood early warning and flood regime modelling to sustainable water resources management in inland plains and the world-famous South-to-North Water Diversion Project. ... Water resources research to support a sustainable China. China is a large country, and its water resources are ...

  12. Home

    Water Resources Management is an international, multidisciplinary forum for the publication of original contributions and the exchange of knowledge and experience on the management of water resources. In particular, the journal publishes contributions on water resources assessment, development, conservation and control, emphasizing policies and ...

  13. Water Resources Research Center

    The Center maintains a library of technical reports that have been published as a result of past research efforts (Dating back to 1966). Several of these publications are widely used resources for water policy and applied water resources research in the state of Florida and are also frequently requested by interested parties both nationally and internationally.

  14. Corporate Social Responsibility (CSR) and Sustainability in Water

    Although access to clean and safe water is a fundamental human right, millions of people around the world lack this essential resource. Through their CSR initiatives, companies are promoting responsible and sustainable practices to ensure the appropriate use and management of water resources. Using a systematic review and PRISMA framework, this study examined the impact of CSR initiatives on ...

  15. Water Resources Research

    Print ISSN: 0043-1397. Water Resources Research is an open access journal that publishes original research articles and commentaries on hydrology, water resources, and the social sciences of water that provide a broad understanding of the role of water in Earth's system. Water Resources Research is now a fully open access journal.

  16. Water Resources Research: Vol 57, No 11

    First Published: 23 October 2021. Key Points. Suspended sediment concentration of the Changjiang River has decreased by an order of magnitude in recent 3 decades from ∼1.0 to ∼0.1 kg/m 3. Sediment source/sink reverse partially and downstream recovery capacity decrease exponentially under the reservoir operation.

  17. Water resources and their management in Pakistan: A critical analysis

    The current paper examines water resources and their management, methodologies, aims, and scope. Through the perspective of water resources and their management in Pakistan, 93 research publications were critically analyzed using a systematic review technique. ... Most current research on water resources and management has been conducted at the ...

  18. Rainstorms impacts on water, sediment, and trace elements ...

    The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University. Streamflow patterns analysis was carried out under Governmental Order to Water Problems Institute, Russian Academy of Sciences, subject no. FMWZ-2022-0003, project 3.7.

  19. Water Resources Research

    Water Resources Research is an Open Access journal: authors of accepted articles pay an article publication charge, and their articles are published under a Creative Commons license. All authors must use the CC BY Creative Commons License. Certain funders mandate a particular type of CC license be used. For more information about the licenses ...

  20. A review of interconnected challenges in the water-energy-food nexus

    The swift growth of cities worldwide poses significant challenges in ensuring a sufficient water, energy, and food supply. The Nexus has innovated valuable systems to address these challenges. However, a crucial issue is the potential for pollution resulting from these systems, which directly and indirectly impacts public health and the overall quality of urban living.

  21. Changes in Moskva R. runoff under anthropogenic impacts

    An algorithm has been proposed for assessing the hydrological role of the main anthropogenic factors governing the formation of Moskva R. runoff both separately and in total. The effect of landscape transformations, hydroengineering structures, and water use on the runoff in the Moskva R. basin has been analyzed for characteristic periods in the recent 150 years (the middle XIX century, the ...

  22. Research Paper

    Bryan Chavez Writing for the Sciences Kevaughn Hunter Does the Increasing Average Global Temperature Harm Water Resources in the Southwestern Region of the United States? Abstract: The southwestern region of the United States currently has a great water resource issue. This issue was linked to anthropogenic climate. Using the CAM5 and CMIP5 climate models simulations, which have become a ...

  23. Environmental Pollution in the Moscow Region According to Long-term

    The present study analyzes the chemical pollution of the atmosphere, precipitation, soil, and surface water in urbanized and background areas of the Moscow region based on long-term Roshydromet monitoring data which are provided in detail in the information materials by the Central Administration for Hydrometeorology and Environmental Monitoring (Central AHEM) and Izrael Institute of Global ...

  24. Runoff transformation under the effect of landscape changes in the

    An attempt is made to assess the hydrological role of landscape changes in the Moskva R. Basin and in the territory of Moscow City, starting from the mid-XX century until now. Special attention is paid to the hydrological role of urban territories. Changes in the runoff of surface, infiltration origin and full river runoff are reflected.