Oldest.org

  • Entertainment

Oldest.org

8 Youngest Published Authors Around the World

Youngest Published Authors

Mustering the creative innovation to write a book or piece is hard enough work for most adults in the writing industry, let alone having your work published and read by the public.

These young authors are proof to us all that the wonder of a child’s imagination and unabridged motivation to just go for it despite all odds is a magical thing.

So, if you’re looking for a push to show you anything is possible, or you just want to revel in awe at these truly inspiring children, then this is absolutely the list for you.

8. Nancy Yi Fan

Age Published: 12 years old (DOB August 26, 1993) Birthplace: Beijing, China Education: Went on to study at Harvard University Books Published: 3

youngest person to publish research paper

At 7 years old, Nancy Fan moved from Beijing to New York with her parents. Unfortunately, just one year later, she found herself no longer simply lost in the childhood wonders of being 8 years old in the Big Apple; but instead, deeply disturbed and saddened by the September 11 th attacks on a land she now saw as a second home.

Fortunately for Nancy, at only 10 years old she began channelling her thoughts on terrorism and peace into the written art. Inspired by a symbolic dream in which she saw birds wage war on one another, she spent the next 3 years compiling this poetic imagery into her first novel. In 2005, at 12 years old, she began proudly emailing her inspired manuscript of first novel Swordbird to publishers until finally, CEO of Harper Collins Publishers agreed to take her on.

Swordbird sold over 50,000 copies and led her to publishing two sequels; Sword Quest and Sword Mountain . A true light of inspiration and positivity came out of such a saddening event.

Did You Know?

Nancy wrote a letter to Jackie Chan imploring him to support and spread her message of peace and justice, noting that her novel contained symbolism of peace and justice, both of which are representative of the base Chinese martial arts is built upon. He did exactly that, and very quickly became an avid fan of her work.

7. Mattie Stephanek

Age Published: 11 years old (DOB July 17, 1990) Birthplace: Washington, DC Education: Home schooled from age 8 onward Books Published: 7

Mattie Stephanek

Mattie Stephanek was writing since he was just 3 years old, and at 11, he finally published his first book, ‘ Journey Through Heartsongs . ’ Somehow, even more impressively than this, between the ages of 11 and 13 Mattie ended up with a total of 7 bestselling published pieces in the form of ongoing Heartsong volumes.

His written niche was grounded in poetry and essays, exploring philosophy and the concept of peace in the world. It is worth noting that this was not only an amazing achievement for someone so young, but the real remarkability was in the ability for critical thinking and analysis, empathy and insight that lay in the mind of an 11-year-old – skills even many adults do not possess.

Sadly, Mattie passed away due to complications from a physical disability in 2004 at the age of 13. His dream of being remembered, in his own words, as “ a poet, a peacemaker, and a philosopher who played ” has certainly been fulfilled.

Mattie Stephanek was also the lyricist for ‘ Music Through Heartsongs ,’ a CD produced by Sony music in 2003 and performed by Billy Gilman. The songs were based on his first novel, and are a testament to his message and philosophy.

6. Libby Rees

Age Published: 9 years old (DOB November 28, 1995) Birthplace: Hampshire, England Education: N/A Books Published: 2

youngest person to publish research paper

“ Try looking in the mirror, first thing in the morning and say out loud to yourself ‘I am better and better every day!’ five times. ”

These are the wise words of Libby Rees from her first book, ‘ Help Hope Happiness . ’ However, this is no ordinary book. At age 9, Libby found herself struggling with her parents’ divorce, and compiled a list of the coping mechanisms she used to deal with her emotions.

She turned this list into a 60-page self-help book geared toward children who find themselves overwhelmed, sad, and in need of some first-hand advice.

Libby wrote in Help Hope Happiness that everyone should look on the positive side of things. It’s clear she took her own advice there by turning her pain into a voice for other children to turn to, and along the way secured a pretty big achievement before she even left primary school!

Libby received three writing awards for both her first book and her second, At Sixes and Sevens , as well as an award presented by The Princess Royal for inspiring a change in the lives of children. She went on to sit on the Youth Board of the UK family court advisory service to act as a representative and voice of all children in the court.

Check this article on Oldest Books that ever Existed by Oldest.Org.

5. Alec Greven

Age Published: 9 years old Birthplace: Castle Rock, Colorado Education: Went on to study at Oxford Books Published: 5

Alec Greven

Another Harper Collins Publisher author is Alec Graven , who focused one of his books on coping with those playground romances!

Alec wrote his first book, ‘ How to Talk to Girls , ’ while subtly watching his fellow classmates fail at their attempts to flirt with the girls at school. He went on to use the book as part of a school project that led to it being published and becoming a New York Times Bestseller – all at just nine years old!

From here, Alec decided to branch out with his advice and pen an entire five-book collection of the titles: How to Talk to Moms , How to Talk to Dads , How to Talk to Santa , and Rules for School .

The publication of How to Talk to Girls gained national traction, resulting in Alec being invited to talk about his book on television before it had even been published! This initial exposure was the stepping stone that got Alec in touch with Harper Collins Publishers.

4. Michelle Nkamankeng

Age Published: 7 years old Birthplace: Johannesburg, South Africa Education: Went on to study at Sacred Heart College Books Published: 8

Michelle Nkamankeng

Michelle Nkamankeng found herself in a bookstore one day browsing the children’s section and wondering why all of these books were written by adults, rather than the age group they were for.

With a heavy emphasis on female empowerment, 7-year-old Michelle began her mission to inspire young girls to push through the barriers of age and gender to fully realize their potential through her 8-part book series. ‘ Waiting for the Waves ’ lays the groundwork for an epic 8-part tale of self-discovery, family, and social progression.

She may not be the youngest author worldwide on this list, but she has certainly made history by becoming the youngest-ever African author and motivational speaker. It’s safe to say that the lack of young authors in her bookstore was both a blessing in disguise and a moment of life changing realization for Michelle.

For her work, Michelle was placed on the youth advisory board of the Nelson Mandela Children’s Fund , which serves to empower the children of Africa and recognize the continent’s youth as whole, vocal citizens with rights to care, opportunity, and autonomy.

3. Christopher Beale

Age Published: 6 years old Birthplace: Zug, Switzerland Education: N/A Books Published: 2

youngest person to publish research paper

At the age of six, Christopher Beale began doing what most kids at that age do: copying their parents. His father was a novelist, and Christopher took it upon himself to start each afternoon with a little writing activity of his own.

It wasn’t until Christopher’s mother suggested he try writing a complete story that he realized his full potential, instead surpassing his mother’s expectations and penning the entire book, ‘ This and Last Year’s Excursions . ”

It wasn’t long until London company Aultbea Publishing picked up the work, and made Christopher not only a published author, but a Guinness World Record holder for the youngest writer to have landed an official publication. Shortly after, Christopher translated his work in his Italian mother tongue for it to be sold outside of England.

Controversy rose from Christopher’s publication, with claims made that ‘ This and Last Year’s Excursions ’ was not published based on written merit but released for the purpose of getting the publishing company’s name in the record book.

2. Thanuwana Serasinghe

Age Published: 4 years old Birthplace: Seychelles, East Africa Education: N/A Books Published: 1

youngest person to publish research paper

4-year-old Thanuwana Serasinghe chose an unusual subject for his book for a boy of his age: the hazards of eating junk food as children.

His book, ‘’ Junk Food , ’ Which took him only 3 days to write with the help and support of his school teachers, was inspired by seeing how much his peers indulged in treats and sweets without thinking of their health and wellbeing. This was something that was fascinatingly important to then-4-year-old Thanuwana.

Another Guinness World Record holder , Thanuwana was one of few to take the top spot of youngest published author by having his story published by Sri Lankan Publishing House, Sooriya Publishers, just five days before his 5th birthday.

Thanuwana personally presented copies of his book to the Seychelles island nation’s Vice President and the principal of the national school association.

1. Dorothy Straight

Age Published: 4 years old (DOB May 25, 1958) Birthplace: Washington, DC Education: N/A Books Published: 1

Dorothy Straight

The youngest author ever is Dorothy Straight at the age of 4 years. She is also one of the most famous of all young writers.

4-year-old Dorothy’s mother was sitting with her one evening when she posed a question for her daughter to ponder: “Who made the world?”

That same evening, Dorothy heavily considered her mother’s question, and decided to write and draw her answers to express her thoughts to her mother. Pleasantly surprised by her daughter’s creativity and insight, her mother contacted Pantheon Books and sent them her daughter’s work.

Clearly, they were just as impressed, as shortly after receiving the manuscript, Dorothy became an officially published author for her youthful, unabashed philosophy.

Dorothy’s insight into how children view their environments through her own book illustrations remains the leading art style used in teaching and inspiring young children in school.

Related Post

Stephen Curry’s Siblings Ranked Oldest to Youngest

Stephen Curry’s 2 Siblings Ranked Oldest to Youngest

Sarah Jessica Parker’s Siblings Ranked Oldest to Youngest

Sarah Jessica Parker’s 7 Siblings Ranked Oldest to Youngest

Youngest TED Talker

8 of the Youngest People to Give a TED Talk

Gabriel Fernandez’s Siblings Ranked Oldest to Youngest

Gabriel Fernandez’s 2 Siblings Ranked Oldest to Youngest

Hart Siblings Ranked Oldest to Youngest

Melissa Joan Hart’s 7 Siblings Ranked Oldest to Youngest

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Recently Added

Oldest Billionaires in India

10 Oldest Billionaires in India

Oldest Lamborghini in the World

Oldest Lamborghini in the World

Oldest Shops in the World

10 Oldest Shops in the World

Oldest mercedes in the world [oldest of all time].

Perth boy Rehan Somaweera has become one of Australia's youngest authors of a scientific paper

A young boy emerges from the ocean wearing a wetsuit and snorkel

A father and son bonding over their love for snorkeling has lead to 10-year-old Rehan Somaweera becoming one of the youngest people in Australia to author a published scientific paper.

Key points:

  • Rehan Somaweera discovered an interesting unknown fact about the WA common octopus 
  • He and his dad confirmed the discovery by recording what they saw across four different reefs
  • His findings were published in a CSIRO journal and he now dreams of being a scientist 

Whenever the sun is shining, Rehan and his dad Ru put on their wetsuits and flippers and jump in the sparkling blue water at Perth's Mettams Pool.

It was on one of these underwater adventures that year five student Rehan fell hook, line and sinker for the West Australian common octopus because of its "weird skin" and eight tentacles. 

"When I saw the octopus it hooked me in because it looked like a creature from a different planet," he said. 

A father and son at the beach in their wetsuits

With a now-piqued interest in the WA common octopus, Rehan noticed the species was often hanging out with the brown-spotted wrasse fish. 

"I thought it could be by coincidence, but it wasn't, it was actually following it," he said.

A picture of a boy wearing a snorkel swimming in the ocean.

His dad Ru, who studies animal behaviour for a living, did not believe the discovery at first.

A keen snorkler, Mr Somaweera said he had never noticed those two creatures together.

An underwater scene with a fish, octopus and seaweed

But his son was right, so the pair spent the next year watching and recording what they saw across four different reefs in Perth. 

Unique marine discovery

What they discovered is known as nuclear-follower behaviour, which itself is not new, but Mr Somaweera, a behavioural ecologist, said it was not known among these two creatures. 

 A young boy wearing a wetsuit at the beach

Rehan discovered the brown-spotted wrasse follows the octopus around as it uses its tentacles to forage for food, making it easier for the fish to also score a feed. 

"We know that certain animals that disturb the flow when they're feeding, creates feeding opportunities for other animals," Mr Somaweera said. 

For example, that could be an octopus sticking its tentacle in a crevice and flushing out food for the fish to eat. 

In the words of Rehan — it's lazy but clever. 

With all the data the pair were collecting on their snorkeling trips, they wrote a scientific paper that has now been published in a CSIRO journal.

A man and his son look at images on a computer

At just 10, Rehan is one of the youngest Australians to have done so, behind at least one other — Brisbane girl Grace Fulton who researched owls from the age of four and later published a paper. 

"Getting something in a well-received, international journal as your first ever publication when you're 10-years-old, I think that's a big hit," Mr Somaweera said. 

"It's not a massive research project but what was important, or what was exciting about this, is getting a child involved in actual research." 

A boy stands on the shore of a beach at sunset

Having had a taste of science, Rehan now dreams of being a scientist in the future. 

"Of course I do!" he said. 

Dad's Sri Lankan upbringing inspires

Mr Somaweera, who grew up in Sri Lanka, said he didn't spend much of his childhood in the water because it was tricky getting from the middle of the island to the coast.

"It was a childhood dream that never came true, so when we started living close to the ocean here, I made sure that I enjoy it, but I also give the opportunity for my kids to enjoy that," he said. 

"It's a window to another world ... the underwater world is amazing."

A man and his son pose for a photo at a beach wearing wetsuits

He said being able to share his passion of marine life with his children by not only telling them about it, but showing them, created a special bond. 

"I'm a huge believer of getting kids out there and I'm starting from my own two kids," Mr Somaweera said. 

"So for them to have that eye to detail and also question certain things...[it] made me really proud."

A young boy plays in the ocean while the sun sets

  • X (formerly Twitter)

Related Stories

What a hoot: the adventures of one of australia's youngest scientists.

A young girl and her father with an owl inside an enclosure

What is a lemon shark? Meet the docile, shy creature named after a fruit

five sharks swimming underneath  the water and along the bottom of sea bed

'Lunging up riverbanks': The mysterious freshwater whipray that's baffling fishers and scientists

orange stingray lying on brown mud

  • Animal Science
  • Marine Biology

How to Write and Publish a Research Paper for a Peer-Reviewed Journal

  • Open access
  • Published: 30 April 2020
  • Volume 36 , pages 909–913, ( 2021 )

Cite this article

You have full access to this open access article

youngest person to publish research paper

  • Clara Busse   ORCID: orcid.org/0000-0002-0178-1000 1 &
  • Ella August   ORCID: orcid.org/0000-0001-5151-1036 1 , 2  

272k Accesses

15 Citations

719 Altmetric

Explore all metrics

Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common pitfalls for each section and recommend strategies to avoid them. Further, we give advice about target journal selection and authorship. In the online resource 1 , we provide an example of a high-quality scientific paper, with annotations identifying the elements we describe in this article.

Similar content being viewed by others

youngest person to publish research paper

Literature reviews as independent studies: guidelines for academic practice

youngest person to publish research paper

How to design bibliometric research: an overview and a framework proposal

youngest person to publish research paper

Plagiarism in research

Avoid common mistakes on your manuscript.

Introduction

Writing a scientific paper is an important component of the research process, yet researchers often receive little formal training in scientific writing. This is especially true in low-resource settings. In this article, we explain why choosing a target journal is important, give advice about authorship, provide a basic structure for writing each section of a scientific paper, and describe common pitfalls and recommendations for each section. In the online resource 1 , we also include an annotated journal article that identifies the key elements and writing approaches that we detail here. Before you begin your research, make sure you have ethical clearance from all relevant ethical review boards.

Select a Target Journal Early in the Writing Process

We recommend that you select a “target journal” early in the writing process; a “target journal” is the journal to which you plan to submit your paper. Each journal has a set of core readers and you should tailor your writing to this readership. For example, if you plan to submit a manuscript about vaping during pregnancy to a pregnancy-focused journal, you will need to explain what vaping is because readers of this journal may not have a background in this topic. However, if you were to submit that same article to a tobacco journal, you would not need to provide as much background information about vaping.

Information about a journal’s core readership can be found on its website, usually in a section called “About this journal” or something similar. For example, the Journal of Cancer Education presents such information on the “Aims and Scope” page of its website, which can be found here: https://www.springer.com/journal/13187/aims-and-scope .

Peer reviewer guidelines from your target journal are an additional resource that can help you tailor your writing to the journal and provide additional advice about crafting an effective article [ 1 ]. These are not always available, but it is worth a quick web search to find out.

Identify Author Roles Early in the Process

Early in the writing process, identify authors, determine the order of authors, and discuss the responsibilities of each author. Standard author responsibilities have been identified by The International Committee of Medical Journal Editors (ICMJE) [ 2 ]. To set clear expectations about each team member’s responsibilities and prevent errors in communication, we also suggest outlining more detailed roles, such as who will draft each section of the manuscript, write the abstract, submit the paper electronically, serve as corresponding author, and write the cover letter. It is best to formalize this agreement in writing after discussing it, circulating the document to the author team for approval. We suggest creating a title page on which all authors are listed in the agreed-upon order. It may be necessary to adjust authorship roles and order during the development of the paper. If a new author order is agreed upon, be sure to update the title page in the manuscript draft.

In the case where multiple papers will result from a single study, authors should discuss who will author each paper. Additionally, authors should agree on a deadline for each paper and the lead author should take responsibility for producing an initial draft by this deadline.

Structure of the Introduction Section

The introduction section should be approximately three to five paragraphs in length. Look at examples from your target journal to decide the appropriate length. This section should include the elements shown in Fig.  1 . Begin with a general context, narrowing to the specific focus of the paper. Include five main elements: why your research is important, what is already known about the topic, the “gap” or what is not yet known about the topic, why it is important to learn the new information that your research adds, and the specific research aim(s) that your paper addresses. Your research aim should address the gap you identified. Be sure to add enough background information to enable readers to understand your study. Table 1 provides common introduction section pitfalls and recommendations for addressing them.

figure 1

The main elements of the introduction section of an original research article. Often, the elements overlap

Methods Section

The purpose of the methods section is twofold: to explain how the study was done in enough detail to enable its replication and to provide enough contextual detail to enable readers to understand and interpret the results. In general, the essential elements of a methods section are the following: a description of the setting and participants, the study design and timing, the recruitment and sampling, the data collection process, the dataset, the dependent and independent variables, the covariates, the analytic approach for each research objective, and the ethical approval. The hallmark of an exemplary methods section is the justification of why each method was used. Table 2 provides common methods section pitfalls and recommendations for addressing them.

Results Section

The focus of the results section should be associations, or lack thereof, rather than statistical tests. Two considerations should guide your writing here. First, the results should present answers to each part of the research aim. Second, return to the methods section to ensure that the analysis and variables for each result have been explained.

Begin the results section by describing the number of participants in the final sample and details such as the number who were approached to participate, the proportion who were eligible and who enrolled, and the number of participants who dropped out. The next part of the results should describe the participant characteristics. After that, you may organize your results by the aim or by putting the most exciting results first. Do not forget to report your non-significant associations. These are still findings.

Tables and figures capture the reader’s attention and efficiently communicate your main findings [ 3 ]. Each table and figure should have a clear message and should complement, rather than repeat, the text. Tables and figures should communicate all salient details necessary for a reader to understand the findings without consulting the text. Include information on comparisons and tests, as well as information about the sample and timing of the study in the title, legend, or in a footnote. Note that figures are often more visually interesting than tables, so if it is feasible to make a figure, make a figure. To avoid confusing the reader, either avoid abbreviations in tables and figures, or define them in a footnote. Note that there should not be citations in the results section and you should not interpret results here. Table 3 provides common results section pitfalls and recommendations for addressing them.

Discussion Section

Opposite the introduction section, the discussion should take the form of a right-side-up triangle beginning with interpretation of your results and moving to general implications (Fig.  2 ). This section typically begins with a restatement of the main findings, which can usually be accomplished with a few carefully-crafted sentences.

figure 2

Major elements of the discussion section of an original research article. Often, the elements overlap

Next, interpret the meaning or explain the significance of your results, lifting the reader’s gaze from the study’s specific findings to more general applications. Then, compare these study findings with other research. Are these findings in agreement or disagreement with those from other studies? Does this study impart additional nuance to well-accepted theories? Situate your findings within the broader context of scientific literature, then explain the pathways or mechanisms that might give rise to, or explain, the results.

Journals vary in their approach to strengths and limitations sections: some are embedded paragraphs within the discussion section, while some mandate separate section headings. Keep in mind that every study has strengths and limitations. Candidly reporting yours helps readers to correctly interpret your research findings.

The next element of the discussion is a summary of the potential impacts and applications of the research. Should these results be used to optimally design an intervention? Does the work have implications for clinical protocols or public policy? These considerations will help the reader to further grasp the possible impacts of the presented work.

Finally, the discussion should conclude with specific suggestions for future work. Here, you have an opportunity to illuminate specific gaps in the literature that compel further study. Avoid the phrase “future research is necessary” because the recommendation is too general to be helpful to readers. Instead, provide substantive and specific recommendations for future studies. Table 4 provides common discussion section pitfalls and recommendations for addressing them.

Follow the Journal’s Author Guidelines

After you select a target journal, identify the journal’s author guidelines to guide the formatting of your manuscript and references. Author guidelines will often (but not always) include instructions for titles, cover letters, and other components of a manuscript submission. Read the guidelines carefully. If you do not follow the guidelines, your article will be sent back to you.

Finally, do not submit your paper to more than one journal at a time. Even if this is not explicitly stated in the author guidelines of your target journal, it is considered inappropriate and unprofessional.

Your title should invite readers to continue reading beyond the first page [ 4 , 5 ]. It should be informative and interesting. Consider describing the independent and dependent variables, the population and setting, the study design, the timing, and even the main result in your title. Because the focus of the paper can change as you write and revise, we recommend you wait until you have finished writing your paper before composing the title.

Be sure that the title is useful for potential readers searching for your topic. The keywords you select should complement those in your title to maximize the likelihood that a researcher will find your paper through a database search. Avoid using abbreviations in your title unless they are very well known, such as SNP, because it is more likely that someone will use a complete word rather than an abbreviation as a search term to help readers find your paper.

After you have written a complete draft, use the checklist (Fig. 3 ) below to guide your revisions and editing. Additional resources are available on writing the abstract and citing references [ 5 ]. When you feel that your work is ready, ask a trusted colleague or two to read the work and provide informal feedback. The box below provides a checklist that summarizes the key points offered in this article.

figure 3

Checklist for manuscript quality

Data Availability

Michalek AM (2014) Down the rabbit hole…advice to reviewers. J Cancer Educ 29:4–5

Article   Google Scholar  

International Committee of Medical Journal Editors. Defining the role of authors and contributors: who is an author? http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authosrs-and-contributors.html . Accessed 15 January, 2020

Vetto JT (2014) Short and sweet: a short course on concise medical writing. J Cancer Educ 29(1):194–195

Brett M, Kording K (2017) Ten simple rules for structuring papers. PLoS ComputBiol. https://doi.org/10.1371/journal.pcbi.1005619

Lang TA (2017) Writing a better research article. J Public Health Emerg. https://doi.org/10.21037/jphe.2017.11.06

Download references

Acknowledgments

Ella August is grateful to the Sustainable Sciences Institute for mentoring her in training researchers on writing and publishing their research.

Code Availability

Not applicable.

Author information

Authors and affiliations.

Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, 27599, Chapel Hill, NC, USA

Clara Busse & Ella August

Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA

Ella August

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ella August .

Ethics declarations

Conflicts of interests.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(PDF 362 kb)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Busse, C., August, E. How to Write and Publish a Research Paper for a Peer-Reviewed Journal. J Canc Educ 36 , 909–913 (2021). https://doi.org/10.1007/s13187-020-01751-z

Download citation

Published : 30 April 2020

Issue Date : October 2021

DOI : https://doi.org/10.1007/s13187-020-01751-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Manuscripts
  • Scientific writing
  • Find a journal
  • Publish with us
  • Track your research
  • International
  • Today’s Paper
  • Premium Stories
  • ⏪ Election Rewind
  • Express Shorts
  • Health & Wellness
  • Brand Solutions

At 13 Ritaj Hussain Alhazmi is the youngest author to publish a book series

Ritaj hussain alhazmi says authors like j k rowling and joanne rendell have inspired her..

youngest person to publish research paper

It takes years for people to get their first book published, but Ritaj Hussain Alhazmi has not one but three of her books published.

With three novels in print, Alhazmi, 13, has been named the world’s “youngest person to publish a book series (female)” by Guinness World Records.

youngest person to publish research paper

While talking to the Guinness World Records Alhazmi said, “Being a Guinness World Records holder is a big achievement that I want to share with young writers. I want to motivate and encourage young writers to take challenges and face obstacles.”

الثاني من مايو يصادف اليوم الذي شهدتُ فيه محاولة تحقيق لقب ‘أصغر كاتبة سلسلة كتب’ في #غينيس للأرقام القياسية May 2nd marks the day where I witnessed the attempt of achieving a record titled ‘youngest series writer’ in #Guinness World Records #ريتاج_الحازمي pic.twitter.com/LjQZAsCxvn — Ritaj Alhazmi | ريتــاج الحازمي (@ritajalhazmi) May 3, 2022

Alhazmi, born in Dhahran city in the Eastern Province of Saudi Arabia, is fluent in Arabic and English and credits her writing inspiration to authors like J K Rowling and Joanne Rendell.

From the age of seven, Alhazmi frequently visited libraries in Saudi Arabia which inspired her to write short stories.

Alhazmi’s first novel titled  Treasure of the Lost Sea  was published in 2019. Her second book,  Portal of the Hidden World , was also published in the same year. While her third novel of the series titled  Beyond the Future World  came out in 2020. She is currently working on the fourth book of the series,  The Passage to the Unknown .

أكملت كتابي الجديد ‘العبور الى المجهول’ وسيتم نشره قريبا Completed my new book ‘The Passage to the Unknown’ and will be published soon. #ريتاج_الحازمي pic.twitter.com/7NZbG6kSZm — Ritaj Alhazmi | ريتــاج الحازمي (@ritajalhazmi) June 10, 2022

After Alhazmi’s second novel came out in 2019, she qualified for the world record for the “youngest person to publish a book series (female)”. When her record was verified, she was just 12 years 295 days old.

Festive offer

Britain’s Bella J Dark holds the record for the “youngest person to publish a book (female)”, after having her book  The Lost Cat  published when she was just 5 years 211 days old.  The Lost Cat  was published on January 31, 2022, by Ginger Fyre Press.

UPSC Key | CAA, UAPA, Chief of Defence Staff and more

UPSC Key | CAA, UAPA, Chief of Defence Staff and Subscriber Only

Bush Reassures India, Pakistan, Bangladesh, Nepal and Sri Lanka, George Bush, 40 years, PLA Hostages Freed, PM On Terror, Rohtak Hartal, editorial, Indian express, opinion news, indian express editorial

May 16, 1984, Forty Years Ago: Bush Reassures India Subscriber Only

Among storks, whose young take longer to mature, both parents bring up the young in a cosy nuclear family

The many types of parents in the animal kingdom Subscriber Only

women voters

Four phases, six takeaways: Women's voting patterns Subscriber Only

ultra-processed

Does adding nutrients make ultra-processed foods healthy?

Prime Minister V P Singh after being sworn in on December 2, 1989, flanked by President R Venkataraman and Rajiv Gandhi to his right, and Vice President Dr Shankar Dayal Sharma and Deputy Prime Minister Chaudhary Devi Lal to his left. Singh congratulates his successor Chandra Shekhar after the latter’s swearing-in on November 10, 1990.

How 1989 elections led to a one-year VP Singh term Subscriber Only

The SC verdict has rightly drawn a fine line between the ‘reasons of arrest,’ which are formal and common to all arrested persons, and the ‘grounds of arrest,’ which have to be peculiar to an individual arrested person.

SC verdict on Newsclick shows due process is more than Subscriber Only

Russian President Vladimir Putin, right, and Chinese President Xi Jinping near the National Centre for the Performing Arts in Beijing, China, on Thursday.

With deepening Russia-China ties, what are the concerns for India? Subscriber Only

Megalopolis at cannes film festival

Coppola's Megalopolis is a monumental mess

  • Social media viral

Royal Challengers Bengaluru captain Faf du Plessis greets Chennai Super Kings head Coach Stephen Fleming as Karn Sharma looks on during a training session ahead of the Indian Premier League (IPL) 2024 cricket match against Chennai Super Kings, at M Chinnaswamy Stadium in Bengaluru

Ahead of the big-ticket clash, the weather continues to improve in the city with light-moderate showers expected between 4-8 pm.

  • RCB vs CSK Live Score, IPL 2024: Rain can play spoilsport in Royal Challengers Bengaluru vs Chennai Super Kings clash 12 mins ago
  • Delhi News Live Updates: As court rejects Bibhav Kumar's anticipatory bail plea in Swati Maliwal case, CM Kejriwal says 'BJP targeting AAP' 24 mins ago
  • RBSE 10th, 12th Result 2024 Live Updates: When is Rajasthan board Class 12th result date 44 mins ago
  • Lok Sabha Election 2024 Live Updates: 'INDIA bloc will win LS polls, BJP will not even cross 200 seats,' says Mamata Banerjee 1 hour ago

Indianexpress

Best of Express

"Why single out BJP? All major opposition parties, national as well as regional, received electoral bonds and together they have got almost the same amount as the BJP received," says J P Nadda. (Express file photo by Sankhadeep Banerjee)

Buzzing Now

doctor

May 18: Latest News

  • 01 Gunmen kill three foreign tourists in Afghanistan’s central Bamyan province
  • 02 Sahara Group warns of legal action against makers after Scam 2010: The Subrata Roy Saga announcement: ‘An abusive act has been demonstrated….’
  • 03 Bhinde says he was not director when hoarding put up; police says he was aware of illegality
  • 04 The Great Indian Kapil Show drops mid-season trailer featuring Kartik Aaryan and Janhvi Kapoor; Ed Sheeran says Pushpa’s iconic line. Watch
  • 05 EU bans distribution of four Russian news outlets
  • Elections 2024
  • Political Pulse
  • Entertainment
  • Movie Review
  • Newsletters
  • Web Stories

Home → Get Published → How to Publish a Research Paper: A Step-by-Step Guide

How to Publish a Research Paper: A Step-by-Step Guide

Picture of Jordan Kruszynski

Jordan Kruszynski

  • January 4, 2024

youngest person to publish research paper

You’re in academia.

You’re going steady.

Your research is going well and you begin to wonder: ‘ How exactly do I get a research paper published?’

If this is the question on your lips, then this step-by-step guide is the one for you. We’ll be walking you through the whole process of how to publish a research paper.

Publishing a research paper is a significant milestone for researchers and academics, as it allows you to share your findings, contribute to your field of study, and start to gain serious recognition within the wider academic community. So, want to know how to publish a research paper? By following our guide, you’ll get a firm grasp of the steps involved in this process, giving you the best chance of successfully navigating the publishing process and getting your work out there.

Understanding the Publishing Process

To begin, it’s crucial to understand that getting a research paper published is a multi-step process. From beginning to end, it could take as little as 2 months before you see your paper nestled in the pages of your chosen journal. On the other hand, it could take as long as a year .

Below, we set out the steps before going into more detail on each one. Getting a feel for these steps will help you to visualise what lies ahead, and prepare yourself for each of them in turn. It’s important to remember that you won’t actually have control over every step – in fact, some of them will be decided by people you’ll probably never meet. However, knowing which parts of the process are yours to decide will allow you to adjust your approach and attitude accordingly.

Each of the following stages will play a vital role in the eventual publication of your paper:

  • Preparing Your Research Paper
  • Finding the Right Journal
  • Crafting a Strong Manuscript
  • Navigating the Peer-Review Process
  • Submitting Your Paper
  • Dealing with Rejections and Revising Your Paper

Step 1: Preparing Your Research Paper

It all starts here. The quality and content of your research paper is of fundamental importance if you want to get it published. This step will be different for every researcher depending on the nature of your research, but if you haven’t yet settled on a topic, then consider the following advice:

  • Choose an interesting and relevant topic that aligns with current trends in your field. If your research touches on the passions and concerns of your academic peers or wider society, it may be more likely to capture attention and get published successfully.
  • Conduct a comprehensive literature review (link to lit. review article once it’s published) to identify the state of existing research and any knowledge gaps within it. Aiming to fill a clear gap in the knowledge of your field is a great way to increase the practicality of your research and improve its chances of getting published.
  • Structure your paper in a clear and organised manner, including all the necessary sections such as title, abstract, introduction (link to the ‘how to write a research paper intro’ article once it’s published) , methodology, results, discussion, and conclusion.
  • Adhere to the formatting guidelines provided by your target journal to ensure that your paper is accepted as viable for publishing. More on this in the next section…

Step 2: Finding the Right Journal

Understanding how to publish a research paper involves selecting the appropriate journal for your work. This step is critical for successful publication, and you should take several factors into account when deciding which journal to apply for:

  • Conduct thorough research to identify journals that specialise in your field of study and have published similar research. Naturally, if you submit a piece of research in molecular genetics to a journal that specialises in geology, you won’t be likely to get very far.
  • Consider factors such as the journal’s scope, impact factor, and target audience. Today there is a wide array of journals to choose from, including traditional and respected print journals, as well as numerous online, open-access endeavours. Some, like Nature , even straddle both worlds.
  • Review the submission guidelines provided by the journal and ensure your paper meets all the formatting requirements and word limits. This step is key. Nature, for example, offers a highly informative series of pages that tells you everything you need to know in order to satisfy their formatting guidelines (plus more on the whole submission process).
  • Note that these guidelines can differ dramatically from journal to journal, and details really do matter. You might submit an outstanding piece of research, but if it includes, for example, images in the wrong size or format, this could mean a lengthy delay to getting it published. If you get everything right first time, you’ll save yourself a lot of time and trouble, as well as strengthen your publishing chances in the first place.

Step 3: Crafting a Strong Manuscript

Crafting a strong manuscript is crucial to impress journal editors and reviewers. Look at your paper as a complete package, and ensure that all the sections tie together to deliver your findings with clarity and precision.

  • Begin by creating a clear and concise title that accurately reflects the content of your paper.
  • Compose an informative abstract that summarises the purpose, methodology, results, and significance of your study.
  • Craft an engaging introduction (link to the research paper introduction article) that draws your reader in.
  • Develop a well-structured methodology section, presenting your results effectively using tables and figures.
  • Write a compelling discussion and conclusion that emphasise the significance of your findings.

Step 4: Navigating the Peer-Review Process

Once you submit your research paper to a journal, it undergoes a rigorous peer-review process to ensure its quality and validity. In peer-review, experts in your field assess your research and provide feedback and suggestions for improvement, ultimately determining whether your paper is eligible for publishing or not. You are likely to encounter several models of peer-review, based on which party – author, reviewer, or both – remains anonymous throughout the process.

When your paper undergoes the peer-review process, be prepared for constructive criticism and address the comments you receive from your reviewer thoughtfully, providing clear and concise responses to their concerns or suggestions. These could make all the difference when it comes to making your next submission.

The peer-review process can seem like a closed book at times. Check out our discussion of the issue with philosopher and academic Amna Whiston in The Research Beat podcast!

Step 5: Submitting Your Paper

As we’ve already pointed out, one of the key elements in how to publish a research paper is ensuring that you meticulously follow the journal’s submission guidelines. Strive to comply with all formatting requirements, including citation styles, font, margins, and reference structure.

Before the final submission, thoroughly proofread your paper for errors, including grammar, spelling, and any inconsistencies in your data or analysis. At this stage, consider seeking feedback from colleagues or mentors to further improve the quality of your paper.

Step 6: Dealing with Rejections and Revising Your Paper

Rejection is a common part of the publishing process, but it shouldn’t discourage you. Analyse reviewer comments objectively and focus on the constructive feedback provided. Make necessary revisions and improvements to your paper to address the concerns raised by reviewers. If needed, consider submitting your paper to a different journal that is a better fit for your research.

For more tips on how to publish your paper out there, check out this thread by Dr. Asad Naveed ( @dr_asadnaveed ) – and if you need a refresher on the basics of how to publish under the Open Access model, watch this 5-minute video from Audemic Academy !

Final Thoughts

Successfully understanding how to publish a research paper requires dedication, attention to detail, and a systematic approach. By following the advice in our guide, you can increase your chances of navigating the publishing process effectively and achieving your goal of publication.

Remember, the journey may involve revisions, peer feedback, and potential rejections, but each step is an opportunity for growth and improvement. Stay persistent, maintain a positive mindset, and continue to refine your research paper until it reaches the standards of your target journal. Your contribution to your wider discipline through published research will not only advance your career, but also add to the growing body of collective knowledge in your field. Embrace the challenges and rewards that come with the publication process, and may your research paper make a significant impact in your area of study!

Looking for inspiration for your next big paper? Head to Audemic , where you can organise and listen to all the best and latest research in your field!

Keep striving, researchers! ✨

Table of Contents

Related articles.

youngest person to publish research paper

You’re in academia. You’re going steady. Your research is going well and you begin to wonder: ‘How exactly do I get a

youngest person to publish research paper

Behind the Scenes: What Does a Research Assistant Do?

Have you ever wondered what goes on behind the scenes in a research lab? Does it involve acting out the whims of

youngest person to publish research paper

How to Write a Research Paper Introduction: Hook, Line, and Sinker

Want to know how to write a research paper introduction that dazzles? Struggling to hook your reader in with your opening sentences?

Priceton-logo

Blog Podcast

Privacy policy Terms of service

Subscribe to our newsletter!

Discover more from Audemic: Access any academic research via audio

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

How to Publish a Research Paper In High School: 18 Journals and Conferences to Consider

youngest person to publish research paper

By Alex Yang

Graduate student at Southern Methodist University

9 minute read

So you've been working super hard writing a research paper , and you’ve finally finished. Congrats! It’s a very impressive accolade already, but there’s a way to take it a level further. As we’ve talked about before in our Polygence blog, “ Showcasing your work and sharing it with the world is the intellectual version of ‘pics or it didn’t happen.’ ” Of course, there are lot of different ways to showcase your work , from creating a Youtube video to making a podcast. But one of the most popular ways to showcase your research is to publish your research. Publishing your research can take the great work you’ve already done and add credibility to it, and will make a stronger impression than unpublished research. Further, the process of having your work reviewed by advanced degree researchers can be a valuable experience in itself. You can receive feedback from experts and learn how to improve upon the work you’ve already done.

Before we dive into the various journals and conferences to publish your work, let’s distinguish between the various publishing options that you have as a high schooler, as there are some nuances. Quick disclaimer: this article focuses on journals and conferences as ways to showcase your work. There are also competitions where you can submit your work, and we have written guides on competing in premier competitions like Regeneron STS and competing in Regeneron ISEF . 

Publishing Options for High School Students

Peer-reviewed journals.

This is rather self-explanatory, but these journals go through the peer review process, where author(s) submit their work to the journal, and the journal's editors send the work to a group of independent experts (typically grad students or other scientists with advanced degrees) in the same field or discipline. These experts are peer reviewers, who evaluate the work based on a set of predetermined criteria, including the quality of the research, the validity of the methodology, the accuracy of the data, and the originality of the findings. The peer reviewers may suggest revisions or leave comments, but ultimately the editors will decide which suggestions to give to the student. 

Once you’ve received suggestions, you have the opportunity to make revisions before submitting your final product back to the journal. The editor then decides whether or not your work is published.

Non-Peer-Reviewed Journals

These are just journals that do not undergo a review process. In general, peer-reviewed journals may be seen as more credible and prestigious. However, non-peer-reviewed journals may make it easier and faster to publish your work, which can be helpful if you are pressed for time and applying to colleges soon .

Pre Print Archives

Preprint archives or servers are online repositories where student researchers can upload and share their research papers without undergoing any review process. Preprints allow students to share their findings quickly and get feedback from the scientific community, which can help improve the research while you’re waiting to hear back from journals, which typically have longer timelines and can take up to several months to publish research. Sharing your work in a preprint archive does not prohibit you from, or interfere with submitting the same work to a journal afterwards.

Research Conferences

Prefer to present your research in a presentation or verbal format? Conferences can be a great way to “publish” your research, showcase your public speaking skills, speak directly to your audience, and network with other researchers in your field. 

Student-led Journals vs Graduate Student / Professor-led Journals 

Some student-led journals may have peer-review, but the actual people peer-reviewing your work may be high school students. Other journals will have graduate students, PhD students, or even faculty reviewing your work. As you can imagine, there are tradeoffs to either option. With an advanced degree student reviewing your work, you can likely expect better and more accurate feedback. Plus, it’s cool to have an expert look over your work! However, this may also mean that the journal is more selective, whereas student-led journals may be easier to publish in. Nonetheless, getting feedback from anyone who’s knowledgeable can be a great way to polish your research and writing.

Strategy for Submitting to Multiple Journals

Ultimately, your paper can only be published in one peer-reviewed journal. Submitting the same paper to multiple peer-reviewed journals at the same time is not allowed, and doing so may impact its publication at any peer-reviewed journal. If your work is not accepted at one journal, however, then you are free to submit that work to your next choice and so on. Therefore, it is best to submit to journals with a strategy in mind. Consider: what journal do I ideally want to be published in? What are some back-ups if I don’t get published in my ideal journal? Preprints, like arXiv and the Research Archive of Rising Scholars, are possible places to submit your work in advance of seeking peer-reviewed publication. These are places to “stake your claim” in a research area and get feedback from the community prior to submitting your paper to its final home in a peer-reviewed journal. You can submit your work to a preprint prior to submitting at a peer-reviewed journal. However, bioRxiv, a reputable preprint server, recommends on their website that a preprint only be posted on one server, so that’s something to keep in mind as well.

Citation and Paper Formats

All of the journals listed below have specific ways that they’d like you to cite your sources, varying from styles like MLA to APA, and it’s important that you double-check the journal’s requirements for citations, titling your paper, writing your abstract, etc. Most journal websites have very detailed guides for how they want you to format your paper, so follow those closely to avoid having to wait to hear back and then resubmit your paper. If you’re looking for more guidance on citations and bibliographies check out our blog post!

18 Journals and Conferences to Publish Your Research as a High Schooler

Now that we’ve distinguished the differences between certain journals and conferences, let’s jump into some of our favorite ones. We’ve divided up our selections based on prestige and reliability, and we’ve made these selections using our experience with helping Polygence students showcase their research .

Most Prestigious Journals

Concord review.

Cost: $70 to Submit and $200 Publication Cost (if accepted)

Deadline: Fixed Deadlines in Feb 1 (Summer Issue), May 1 (Fall), August 1 (Winter), and November 1 (Spring)

Subject area: History / Social Sciences

Type of research: All types of academic articles

The Concord Review is a quarterly journal that publishes exceptional essays written by high school students on historical topics. The journal has been around since 1987 and has a great reputation, with many student winners going to great universities. Further, if your paper is published, your essays will be sent to subscribers and teachers all around the world, which is an incredible achievement.

Papers submitted tend to be around 8,000 words, so there is definitely a lot of writing involved, and the Concord Review themselves say that they are very selective, publishing only about 5% of the essays they receive.

We’ve posted our complete guide on publishing in the Concord Review here.

Journal of Emerging Investigators (JEI)

Deadline: Rolling

Subject area: STEM 

Type of research: Original hypothesis-driven scientific research

JEI is an open-access publication that features scientific research papers written by middle and high school students in the fields of biological and physical sciences. The journal includes a comprehensive peer-review process, where graduate students and other professional scientists with advanced degrees will review the manuscripts and provide suggestions to improve both the project and manuscript itself. You can expect to receive feedback in 6-8 weeks.

This should be the go-to option for students that are doing hypothesis-driven, original research or research that involves original analyses of existing data (meta-analysis, analyzing publicly available datasets, etc.). This is not an appropriate fit for students writing literature reviews. Finally, a mentor or parent must submit on behalf of the student.

We’ve had many Polygence students successfully submit to JEI. Check out Hana’s research on invasive species and their effects in drought times.

STEM Fellowship Journal (SFJ)

Cost: $400 publication fee

Subject area: All Scientific Disciplines

Type of research: Conference Proceedings, Review Articles, Viewpoint Articles, Original Research

SFJ is a peer-reviewed journal published by Canadian Science Publishing that serves as a platform for scholarly research conducted by high school and university students in the STEM fields. Peer review is conducted by undergraduate, graduate student, and professional reviewers.

Depending on the kind of research article you choose to submit, SFJ provides very specific guidelines on what to include and word limits.

Other Great Journal Options

National high school journal of science (nhsjs).

Cost: $250 for publication 

Deadline: Rolling 

Subject area: All science disciplines 

Type of research: Original research, literature review

NHSJS is a journal peer reviewed by high schoolers from around the world, with an advisory board of adult academics. Topics are STEM related, and submission types can vary from original research papers to shorter articles.

Curieux Academic Journal

Cost: $185-215

Subject area: Engineering, Humanities, and Natural Science, Mathematics, and Social Science

Type of research: Including but not limited to research papers, review articles, and humanity/social science pieces.

Curieux Academic Journal is a non-profit run by students and was founded in 2017 to publish outstanding research by high school and middle school students. Curieux publishes one issue per month (twelve per year), so there are many opportunities to get your research published. 

The Young Scientists Journal 

Deadline: December

Subject area: Sciences

Type of research: Original research, literature review, blog post

The Young Scientists Journal , while a popular option for students previously, has paused submissions to process a backlog. The journal is an international peer-reviewed journal run by students, and creates print issues twice a year. 

The journal has also been around for a decade and has a clear track record of producing alumni who go on to work in STEM.

Here’s an example of research submitted by Polygence student Ryan to the journal.

Journal of Research High School (JRHS)

Subject area: Any academic subject including the sciences and humanities

Type of research: Original research and significant literature reviews.

JRHS is an online research journal edited by volunteer professional scientists, researchers, teachers, and professors. JRHS accepts original research and significant literature reviews in Engineering, Humanities, Natural Science, Math, and Social Sciences.

From our experience working with our students to help publish their research, this journal is currently operating with a 15-20 week turnaround time for review. This is a bit on the longer side, so be mindful of this turnaround time if you’re looking to get your work published soon.

Youth Medical Journal

Deadline: March (currently closed)

Subject area: Medical or scientific topics

Type of research: Original research, review article, blog post, magazine article

The Youth Medical Journal is an international, student-run team of 40 students looking to share medical research.

We’ve found that this journal is a good entry point for students new to research papers, but when submissions are busy, in the past they have paused submissions. 

Journal of High School Science (JHSS)

Subject area: All topics

Type of research: Original research, literature review, technical notes, opinion pieces

This peer-reviewed STEAM journal publishes quarterly, with advanced degree doctors who sit on the journal’s editorial board. In addition to typical STEM subjects, the journal also accepts manuscripts related to music and theater, which is explicitly stated on their website.

Due to the current large volume of submissions, the review process takes a minimum of 4 weeks from the time of submission.

Whitman Journal of Psychology

Subject area: Psychology

Type of research: Original research, podcasts

The WWJOP is a publication run entirely by students, where research and literature reviews in the field of psychology are recognized. The journal is run out of a high school with a teacher supervisor and student staff.

The WWJOP uniquely also accepts podcast submissions, so if that’s your preferred format for showcasing your work, then this could be the journal for you!

Cost: $180 submission fee

Subject area: Humanities

Type of research: Essay submission

The Schola is a peer-reviewed quarterly journal that showcases essays on various humanities and social sciences topics authored by high school students worldwide. They feature a diverse range of subjects such as philosophy, history, art history, English, economics, public policy, and sociology.

Editors at Schola are academics who teach and do research in the humanities and social sciences

Critical Debates in Humanities, Science and Global Justice

Cost: $10 author fee

Subject area: Ethics and frontiers of science, Biology and ecosystems, Technology and Innovation, Medical research and disease, Peace and civil society, Global citizenship, identity and democracy, Structural violence and society, Psychology, Education, AI, Sociology, Computer Science, Neuroscience, Cultural politics, Politics and Justice, Computer science and math as related to policy, Public policy, Human rights, Language, Identity and Culture, Art and activism

Critical Debates is an international academic journal for critical discourse in humanities, science and contemporary global issues for emerging young scholars

International Youth Neuroscience Association Journal

Subject area: Neuroscience

Type of research: Research papers

Although this student peer-reviewed journal is not currently accepting submissions, we’ve had students recently publish here. 

Here’s an example of Nevenka’s research that was published in the November 2022 issue of the journal.

Preprint Archives to Share Your Work In

Subject area: STEM, Quantitative Finance, Economics

arXiv is an open access archive supported by Cornell University, where more than 2 million scholarly articles in a wide variety of topics have been compiled. arXiv articles are not peer-reviewed, so you will not receive any feedback on your work from experts. However, your article does go through a moderation process where your work is classified into a topic area and checked for scholarly value. This process is rather quick however and according to arXiv you can expect your article to be available on the website in about 6 hours. 

Although there’s no peer review process, that means the submission standards are not as rigorous and you can get your article posted very quickly, so submitting to arXiv or other preprint archives can be something you do before trying to get published in a journal.

One slight inconvenience of submitting to arXiv is that you must be endorsed by a current arXiv author, which can typically be a mentor or teacher or professor that you have. Here’s an example of a Polygence student submitting their work to arXiv, with Albert’s research on Hamiltonian Cycles.

Subject area: Biology

Type of research: Original research

bioRxiv is a preprint server for biology research, where again the research is not peer-reviewed but undergoes a check to make sure that the material is relevant and appropriate.

bioRxiv has a bit of a longer posting time, taking around 48 hours, but that’s still very quick. bioRxiv also allows for you to submit revised versions of your research if you decide to make changes.

Research Archive of Rising Scholars (RARS)

Subject area: STEM and Humanities

Type of research: Original research, review articles, poems, short stories, scripts

Research Archive of Rising Scholars is Polygence’s own preprint server! We were inspired by arXiv so we created a repository for articles and other creative submissions in STEM and the Humanities.

We launched RARS in 2022 and we’re excited to offer a space for budding scholars as they look to publish their work in journals. Compared to other preprint archives, RARS also accepts a wider range of submission types, including poems, short stories, and scripts.

Conferences to Participate In

Symposium of rising scholars.

Deadline: Twice a year - February and July

Polygence’s very own Symposium of Rising Scholars is a bi-annual academic conference where students present and share their research with their peers and experts. The Symposium also includes a College Admissions Panel and Keynote Speech. In our 8th edition of the Symposium this past March, we had 60 students presenting live, approximately 70 students presenting asynchronously, and over 100 audience members. The keynote speaker was Chang-rae Lee, award-winning novelist and professor at Stanford University.

We’re looking to have our 9th Symposium in Fall of 2023, and you can express your interest now. If you’re interested to see what our Polygence scholars have presented in the past for the Symposium, you can check out their scholar pages here.

Junior Science and Humanities Symposium (JSHS)

Deadline: Typically in November, so for 2024’s competition look to submit in Fall 2023

Subject area: STEM topics

JSHS is a Department of Defense sponsored program and competition that consists of first submitting a written report of your research. If your submission is selected, you’ll be able to participate in the regional symposium, where you can present in oral format or poster format. A select group from the regional symposium will then qualify for the national symposium.

One of the great things about JSHS compared to the journals mentioned above is that you’re allowed to work in teams and you don’t have to be a solo author. This can make the experience more fun for you and your teammates, and allow you to combine your strengths for your submission.

Related Content:

Top 8 Business Journals to Publish Your Research

Why Teens Should Attend the National Student Leadership Conference (NSLC)

How to Brainstorm Your Way to Perfect Research Topic Ideas

Top 20 Most Competitive Summer Programs for High School Students

Research Opportunities for High School Students

Want to start a project of your own?

Click below to get matched with one of our expert mentors who can help take your project off the ground!

youngest person to publish research paper

Latest Stories

  • more Entertainment Worth Health IPL 2024 Women's Day 2024

Meet India’s Youngest PhD Holder Who Completed His MSc At 10 Years Old

 width=

For some, mathematics is surely something that can put their minds to a spin. But some truly enjoy the challenge and end up being good at it. However, there are some for whom all this is rather effortless. 

We came across one such individual, who has defied odds at a very young age. Meet Tathagat Avatar Tulsi, India’s child prodigy.

Tathgat Avtar Tulsi

Defying odds in academics

Tulsi was born on September 9th, 1987, in Patna, Bihar. Son of Supreme Court advocate Tulsi Narayan Prasad, his parents noticed his pace of learning at a very early age. He was in fact one of the youngest to ever complete his high-school, graduation, masters and PhD. 

He reportedly completed his high school when he was just 9 years old -- an age when kids are barely done with multiplication . In just a year, he completed his BSc followed by Masters in Science from Patna Science College at the age of 12. Speaking about his skills, he told TOI , "I believe I have a gift. When I was young and while my friends were struggling to solve mathematical problems, I would solve those easily."  

Completing his PhD from IISc Bengaluru

In August 2009, he got his Ph.D. from the Indian Institute of Science, Bangalore at the age of 22. Here, his Ph.D. thesis was on "Generalizations of the Quantum Search Algorithm". He co-authored an unpublished research manuscript ("A New Algorithm for Fixed-point Quantum Search") with Lov Grover, the inventor of a quantum search algorithm that goes by his name. 

The research paper was just 35 pages long, yet he felt it had immense potential. He said in an interview with TOI, "Despite the short length, the thesis is innovative enough to qualify as a PhD work. I was always interested in quantum computers and would like to develop software for it. Quantum computers will take us one step ahead in changing the world for the better."

Tathgat Avtar Tulsi youngest phd india

Winning awards and accolades from an early age

Tulsi has been in the limelight since a very young age. In 2001, he was shortlisted by the Indian Government's Department of Science and Technology (DST) to participate in a Nobel laureates conference in Germany. 

He has been even regarded as one of the seven most gifted Asian youngsters by TIME magazine in 2003, mentioned as "Superteen" by Science Magazine, while also being invited by Italian billionaire Luciano Benetton for a dinner in honor of Al Gore on 14 June 2007 in Milano, Italy. 

Assistant Professor on contract at IIT Bombay

In 2010, after completing his PhD, he was offered a role to teach students at the prestigious IIT Bombay, when he was barely 23 years old. 

Tathgat Avtar Tulsi

He continued this role for eight years, only to be sacked by the institution in the year 2019, reportedly as he was inattentive due to health issues throughout 2018. He did request to be transferred to IIT Delhi, but that request was quashed. 

Visual Stories

Virat Kohli

'Once I am done, I will be gone...' 8 Quotes By Virat Kohli

Sudha Murty

10 Sudha Murty Quotes On Love, Relationships, And Marriage

Indiatimes

Cannes 2024: Indian Celebs Get Ready To Slay On The Red Carpet

Indiatimes

Optical Illusion: Spot The Odd One Out In This Swarm Of Butterflies

Kashmir

10 Best Places To Enjoy Summer Vacation In Jammu And Kashmir

Indiatimes

Cannes 2024: Viral Moments From The 77th Cannes Film Festival

Indiatimes

9 Motivational Quotes By Vikas Divyakirti For Students

Mark Zuckerberg

Happy Birthday Mark Zuckerberg: 10 Fun Facts About Meta CEO

Indiatimes

Most Expensive Phones In The World

Indiatimes

Cannes 2024: 7 Indian Films To Make A Mark At The 77th Cannes Film Festival

Indiatimes

Accept the updated Privacy & Cookie Policy

Guinness World Records

Young writer breaks two records before the age of five as he publishes book sequel

Split images Saeed AlMheiri during his record attempt

Achieving a world record is no small feat, achieving two is impressive, but to do it before the age of five is amazing to say the least.

But that's exactly what Saeed Rashed AlMheiri (UAE), who you might remember, achieved in March of this year the world record for youngest person to publish a book at the age of 4 years and 218 days, has done.

After 20 days, he managed to write a sequel to that book, earning him the title for youngest person to publish a book series (male) at the age of 4 years and 238 days old.

Saeed AlMheiri while attending Abu Dhabi international Book fair

The book was published in the United Arab Emirates by Rainbow Chimney Educational Aids, a commercial publishing house that focuses on children aged up to 13 years old.

As per the records guidelines, the book must sell at least 1,000 printed copies, which the family managed to do during Abu Dhabi International Book Fair 2023.

His first book, titled The Elephant Saeed and the Bear , talks about an elephant, as Saeed puts it: “The elephant wanted to have a picnic on a mountain. He met a polar bear who instead of eating the elephant chooses to become his friend.”

His second book in the series, My True Friend , talks about the elephant saying farewell to his polar bear friend as he heads back home.

However, the elephant falls in water and calls for help, and the bear comes to the rescue.

The story ends with the elephant thanking his friend, or as Saeed put it: “Thank you for being a true friend”.

Saeed with an adjudicator after becoming the youngest person to publish a book series

Saeed says: “My book teaches children how to be kind.”

Books are Saeed’s best friend, and he is also very fond of numbers and robotics.

He is a very ambitious young man and wants to become a scientist one day.

“When I grow up, I want to be a scientist and a superhero to save the Earth.”

His mother, Mouza AlDarmaki said that the family intends to inspire other children and encourage them to read and write.

“We want kids to believe in themselves, if Saeed can do it, they can too.”

Saeed’s inspiration comes from his sister, AlDhabi AlMheiri, who also published a book series at a young age.

AlDhabi also holds a Guinness World Records title for the youngest person to publish a bilingual book series (female) at the age of 8 years and 239 days old.

Saeed and AlDhabi AlMheiri show casing their books at a book fair

She published her book titled I Had An Idea And Here Was The Beginning in both English and Arabic.

“I want to tell children that they can be whatever they want to be if they try hard and read what they like in order to develop their minds.” - AlDhabi

We can’t wait to see what the future holds for these incredible young stars!

Want more? Follow us across our social media channels to stay up-to-date with all things Guinness World Records! You can find us on Facebook , Twitter , Instagram , TikTok , LinkedIn , and Snapchat Discover – including our new Guinness World Records Extreme channel. Don’t forget, we’re also on YouTube ! Still not had enough? Follow the link here to buy our latest book, filled to the brim with stories about our amazing record breakers.

Related Articles

World's youngest newspaper columnist reveals writing secrets to inspire others

World's youngest newspaper columnist reveals writing secrets to inspire others

Blockbusters! 2017: Out now in the US!

Blockbusters! 2017: Out now in the US!

This Aussie girl is the world's youngest magazine editor at the age of 8

This Aussie girl is the world's youngest magazine editor at the age of 8

Watch time lapse video of the making of the world's longest paper doll chain

Watch time lapse video of the making of the world's longest paper doll chain

Five-year-old Brit becomes youngest female to publish a book

Five-year-old Brit becomes youngest female to publish a book

Loom band bracelet world record for dedicated Northern Ireland youngster

Loom band bracelet world record for dedicated Northern Ireland youngster

youngest person to publish research paper

How Teens Can Publish Scientific Research Before College

  • April 15, 2020

I recently had the opportunity to meet the team from the Journal of Emerging Investigators (JEI), a free mentorship program and open-access journal that publishes original research written by middle and high school students about topics in the biological and physical sciences. It offers an exciting opportunity for students who want to publish their scientific findings in a peer-reviewed scientific journal before they go to college.

JEI is a non-profit group, operated by graduate students, postdoctoral fellows, and professors across the US, that gives teens feedback on original research and helps them publish their research through JEI’s open-access and free journal. 

In addition to providing students insight and experience in the scientific process, JEI offers a unique opportunity to learn peer review and publication, a critical part of being a scientist. Publishing is also a significant accomplishment that students can feature in their college and scholarship applications and resumes.

Journal of Emerging Investigators_Student Workshop

I chatted with Brandon Sit, Executive Director at JEI, and asked him to explain how the process works, the benefits of the program, what students and mentors can expect, and how parents can support their child.

How did JEI get started?

Like many of the research projects we publish, JEI started with an observation. As a volunteer at several local science fairs in the Boston area, our founder, Sarah Fankhauser, noticed that the posters of many students – including all the data and the conclusions — often went into the trash once fair concluded. She asked herself, ‘How could we keep the work of these young scientists alive past science fair and share it more broadly?’.

At the time, there was no science journal dedicated to publishing the work of middle and high school students, so Sarah brought the idea to her fellow graduate students at Harvard Medical School. We published our first paper in 2012 and haven’t looked back! 

We started JEI because we believe that all students should have an opportunity to share their research findings with their peers and the world. In particular, we believe that they should be able to do so in a way that teaches them about how professional and academic scientists share and curate knowledge!

Education about scientific communication is virtually non-existent in US K-12 science curricular guidelines, and our experience as practicing scientists gave us a perfect background to set up JEI. By creating a journal and peer review process from the ground up, we were able to tailor the entire experience to pre-college students. In doing so, we baked in opportunities to engage and mentor them at all stages of the scientific method – from question generation to data collection all the way through to publication of results. 

How do students benefit?

As professional scientists, a large part of our day involves reading scientific articles, writing about our own data into journal manuscripts, or otherwise communicating science to both scientific audiences and the public. The times when we prepare our research for publication are particularly edifying; they help us to see “the whole picture” of our research with remarkable new clarity.  

T hese experiences—and the skill to communicate scientific work clearly—are critical to success in STEM careers. Yet most young scientists have few opportunities to present their independent scientific research, and outside of once-a-year local science fairs, receive minimal feedback from other scientists and educators.

We founded JEI to offer professional scientific mentorship and engage students on their own turf using their unique, independent research. The manuscript publication process provides a perfect substrate for scientists to suggest feedback to students and engage them in a series of scientific critiques and revisions that ultimately both strengthens their research project and trains their minds to tackle future challenges in STEM.

Publishing with JEI has taught me the interdisciplinary nature of scientific research. Each problem has to be tackled with an open mind, with a creativity and curiosity that draws upon knowledge from numerous different fields, and with a highly collaborative mindset that seeks to build upon previous work done by other researchers. I am excited to continue pursuing research in science and Artificial Intelligence, and I am extremely thankful for the opportunity JEI gave me to publish my work. – Toby Kremain, Newton North High School (Newton, MA)

What kind of impact has JEI had?

Since 2012, JEI has published over 250 papers authored by pre-college students! Since many of our manuscripts have several student authors, this represents about 1500 students that we have been able to mentor through our organization. Our reach from a small Massachusetts-centric organization has expanded—we now have submissions from all over the United States, as well as international submissions. Our staff has grown to about 300 active PhD students, research fellows, academic faculty, and professional scientists. 

Can you share some examples of published articles?

1) “ Investigation of everyday locations for antibiotic-resistant bacteria in Cambridge, Massachusetts”  

2) “ Antibacterial activity and absorption of paper towels made from fruit peel extracts ”

3) “ A simple printing solution to aid deficit reduction ”: This article was picked up by CNN and subsequently covered very heavily in the national media ( CNN , the Atlantic ).

How does the research submission process work?

JEI’s core activity is as a scientific journal, which means that our process starts when students, with the help of their teacher or other supervisor, submit an electronic version of their research manuscript to us on our online submission portal. 

For the student, the process starts when they have a research question they are passionate about. With the support of their senior mentor (e.g., a parent or a teacher), the student carries out experiments to answer their question of interest and writes up their research in a manuscript. We provide guidelines on emerginginvestigators.org to help students convert their classroom work or science fair work into a scientific manuscript, something that they may not have done in class before.

A Managing Editor reviews every submitted manuscript, first performing a quality control/formatting check to make sure all of our basic requirements have been met: a clear hypothesis, basic adherence to our writing guidelines, and inclusion of appropriate approval forms. We will communicate with the student and mentor via email to fix any of those issues.

Next, the Managing Editor assigns the manuscript to a dedicated Associate Editor, who will then ask 3 or 4 JEI-affiliated scientists with expertise in that research area to review the manuscript. Both the Associate Editor and reviewers read the manuscript and give constructive feedback about how to improve the experiments and the writing. Once the review process is finished, the editor combines all of the reviewers’ comments into a summary letter that helps the student authors understand each comment and the work they need to do to revise the manuscript. There is no time limit for students to revise their manuscripts, and the editors are available as contacts for the students if they have additional questions. 

Once students submit their revised manuscript, the same editor will either return it for additional edits or accept the manuscript and move it to copy editing. Our copy editing team then works with the student to hone style, grammar, clarity, and other presentation details of the manuscript, while retaining the student’s voice and writing. Once the student has gone through the copy editing revisions, the manuscript is passed on to our Publishing Editors, who format the article into a professional journal proof. The article is then published on our website, and we send press releases to any local media outlets.

We’ve designed this process to be almost exactly the same as the one used by professional scientific journals. From start to finish, we aim to publish students’ work on our website within 5-6 months of their initial submission.

What should students know?

First off, congratulations on undertaking or planning to undertake your own independent research! While research can often be tough, it is ultimately very rewarding to create a project that contributes to our general knowledge, and is a complete product that you can present to others to show your efforts and skills. 

Our most important piece of advice is for you to read our guidelines and follow them as closely as possible—most delays in manuscript processing come from guidelines not being followed. Make sure to share these guidelines with your teacher or mentor, so that you are both on the same page. This will not only help you design your experiment, but will also help you avoid delays from formatting or other causes when you submit your manuscript!

One of the most important guidelines is that your research is hypothesis-driven. This means that you ask a question, predict what the answer might be (your hypothesis), and then carry out experiments or tests to see whether your predictions are supported by your experimental results or not.

Another important aspect is that you complete the proper approval forms before undertaking any research that involves human participants or vertebrate animals (like mice).

If you would like support from your teacher in doing your project, we suggest that you talk to them one-on-one about your desire to do your own project to see if they can assist you. Before you do this, it may also be very useful to fill out a research study proposal form so you can present your ideas to them in writing. They may be able to give you more specific feedback on your form than they would in a conversation. Filling out the form will also show them that you have spent time thinking seriously about your project. 

JEI has tools and resources to help with any stage of a scientific experiment. Even if you haven’t thought of your experiment yet—if you just have an idea of something you are interested in—get in touch with us at our Ask-a-Scientist page and we’ll do our best to help you!

How can students use this experience in college applications?

Publishing in a scientific journal before college is a significant boost to any students’ profile for college and/or scholarship applications. It demonstrates that they understand the practice of science in today’s society, and more importantly, shows that they are capable of generating an original scientific question, developing hypotheses about that question, testing their hypotheses, and writing about their results. 

Publishing a manuscript on your own research project shows great tenacity, commitment, and skill (both in science and in writing). You will learn how to think critically about how to answer your question, accept constructive criticism, manage your time and resources, write like a scientist, and design experiments. You may want to talk about all or some of these aspects in your essays and, if the application allows, attach your manuscript as a supplemental document. You may also want to talk about the challenges and successes of carrying out your own research project and what you learned from trying things out for yourself. In addition, presenting your own research project and manuscript is a great way to show yourself a self-motivated and curious individual. 

Beyond applications, this experience often ignites a student’s interest in pursuing a STEM major and opportunities during college: many of our student authors go on to apply for and obtain positions as undergraduate researchers at university labs and research groups. 

What is a teacher’s role and how can they get involved?

Since our students can range in grade level from middle to high school, one blanket requirement for all of our manuscripts is that an adult is listed as a senior author. In virtually all cases, this is the student’s teacher or research supervisor. 

The senior author’s role in the process is to assist the student in the design and execution of the study and the manuscript write-up. The level of involvement of each teacher is, of course, up to the student and teacher—some students can undertake their projects very independently (especially if they have had previous experience), whereas others would like more advice if this is their first research project. We would like senior mentors to be present for all steps of the process, from submission all the way to publication, in order to help the student tackle the revisions to the manuscript. This can sometimes be a lengthy process (>6 months), given that revisions can take a while to complete if a student is busy with classes. 

We also require that the manuscript be submitted to our platform by the senior mentor.  Besides supervising the student(s) during their experiments and their revisions, the teacher (or mentor) acts as the main point of contact for communications with the journal. This approach ensures that the manuscript has received approval to be submitted and that there is a mentor present and willing to assist the student author.

Teachers with student(s) potentially interested in JEI can get more information about the process and submission requirements on our website. One requirement that some authors do not realize we have is that for any studies involving humans or animals, authors must obtain ethical and scientific approval from the appropriate entities before performing their research. This is something that teachers can particularly help with, by ensuring authors have all the correct documentation completed before they embark on their experiments. 

JEI has also recently started to generate materials that incorporate JEI articles into classroom worksheets and exercises! These are great tools for educators who would like to incorporate reading of primary scientific literature into their classrooms. These are free to use and can be accessed on our resources page . 

How can parents support their child?

Parents play similar roles in the JEI process as do teachers; they can also act as senior mentors on student manuscripts. 

If, as a parent, you would like to get your child involved in a research project, we would encourage you to have them explore some of JEI’s published articles. Not all of them may be accessible to younger grade levels, so you and/or their teacher may need to choose the right articles to read and help them brainstorm new directions of research.

One question we get sometimes from students is whether their research is “good enough” to publish. At JEI, we try to emphasize that you don’t need to do an incredibly complex experiment with expensive equipment to do “good” science—you just need to be interested in a topic and ask a well-thought-out scientific question about it. We place absolutely no requirement on the complexity of the manuscript. Here, parents can help us out by encouraging their children to ask questions and think scientifically about the things all around them in their everyday lives! 

One new program we’re starting at JEI is tailored to this aspect of scientific inquiry: our new “Ask-a-Scientist” feature. Ask-a-Scientist is an online portal where students and their teachers/parents, no matter their research progress, can submit questions to our staff and receive individualized advice and help designing good research questions and outlining doable experiments. Interested parents and students can find more information by visiting Ask-a-Scientist .  

You can also ask your child or your child’s teacher if there are any local science fairs that students are participating in or if there are research-based projects being carried out in class. Science fair submissions and in-class research projects (commonly as a final project) often become JEI submissions.  

Is there any cost to participate?

Submission and publication in JEI are completely free for all students and their mentors.

Is there anything else you would like to share?

JEI also offers a number of educational resources for teachers and is always looking to collaborate with classrooms in the local Boston area to help teach authentic STEM!

Final thoughts

If your child has been published in JEI, will you share your experience with me? I’d love to hear about your child’s work and your experience with the organization! Contact me at bostontechmom.com . 

Image Credit: JEI

  • Posted in STEM Programs

Comments on “How Teens Can Publish Scientific Research Before College”

hey, can I submit a manuscript based on a idea/ observation rather than a actual research paper regarding school bus transport system in Dubai. This idea requires further efficacy and feasibility study to confirm the observation.

I would start by reviewing the Submission Guidelines: https://emerginginvestigators.org/submissions/hypothesis-driven-research .

Does JEI by any chance accept research papers by international students in high school or it’s required to be only for the US citizens?:)

International submissions are accepted.

Hello – How long does the review process take on average? Does JEI suggest the right journals based on the paper? How long does it take from submission to journal to get published?

JEI says they aim to publish students’ work on their website within 5-6 months of their initial submission. Visit their website to learn about the submission process: https://www.emerginginvestigators.org/submissions/guidelines . Contact them directly with questions at [email protected] .

Hello, I have completed a research on Solar Panels and how to improve their efficiency. My research suggests new scientific way to improve the Solar panel efficiency, however I have not completed the testing due to limitation in constructing the material in the lab. Can I publish my findings at JEI? Thanks

I would contact JEI directly to discuss your research. You can reach them at [email protected] .

Hello, Thank you.

I have been doing a research on the Collatz conjecture and I discovered some ways to simplify it. I did this research alone without even a teacher or parent helping me. Am I able to publish in this journal?

Hey Ntobeko, I have also been working on Collatz conjecture. I have also find some patterns in Collatz Sequence, without the help of anybody else…if u would like to contact me, then email me here, [email protected]

Hey, Can I publish Mathematical Research Papers, with the help of JEI, like a newly devised Formula(which requires less time than Traditional method) or a paper on patterns observed in numbers(Number-Theory related), etc…???

Thanks for your question! I would contact JEI directly with your idea. You can reach them at [email protected] .

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Yes, add me to your mailing list

RSM Award Ceremony

About BostonTechMom

Cyndi Reitmeyer, BostonTechMom

Cyndi Reitmeyer is BostonTechMom’s founder and the person behind the articles and program listings. Her blog explores topics related to raising children who are comfortable, competent, capable, and confident around science, technology, engineering, and math—whether they’re headed for a STEM career or not.

Don't miss a post!

Popular posts.

Teens working on robotics project

American Mathematical Society

Publications — Over 100 years of publishing excellence

  • Book Author Resources
  • Submit a Book Proposal
  • AMS Rights, Licensing, and Permissions
  • Open Math Notes
  • Frequently asked questions
  • Member Journals
  • Research Journals
  • Translation Journals
  • Distributed Journals
  • Open Access Journals
  • Guidelines and Policies
  • Journal Author Resources

Librarian Resources

  • eBook Collections
  • COUNTER Usage Statistics
  • My Subscriptions
  • Subscription Information
  • Licensing Information

Mathematical Reviews/MathSciNet®

  • MathSciNet ®
  • Reviewer Home
  • MathSciNet ® Subscriptions

Membership — Welcome to your membership center

Join the ams, renew your membership, give a membership, individual membership.

  • Member Benefits
  • Member Directory
  • Reciprocating Societies
  • Members in Developing Countries

Institutional Membership

  • Domestic Institutions
  • International Institutions
  • Two-Year Institutions
  • Graduate Student Chapter Program

Other Member Types

  • Corporate Memberships
  • Associate Memberships

Meetings & Conferences — Engage with colleagues and the latest research

National meetings.

  • Joint Mathematics Meetings
  • Upcoming JMMs
  • Previous JMMs
  • Special Lectures
  • Professional Enhancement Programs (PEPs)

Sectional Meetings

  • Upcoming Sectionals
  • Previous Sectionals
  • Presenting Papers
  • Hosting Sectionals

Other Meetings, Conferences & Workshops

  • Mathematics Research Communities
  • Education Mini-conference
  • International Meetings
  • Mathematics Calendar
  • Short Courses
  • Workshop for Department Chairs and Leaders

Meetings Resources

  • Suggest a Speaker
  • AMS Meetings Grants
  • Submitting Abstracts
  • Welcoming Environment Policy
  • MathSafe – supporting safe meetings

News & Outreach — Explore news, images, posters, and mathematical essays

News from the ams.

  • AMS News Releases
  • Feature Stories
  • Information for Journalists
  • In Memory Of

Math Voices

  • Feature Column
  • Math in the Media
  • Column on Teaching and Learning

Explorations

  • Recognizing Diverse Mathematicians
  • AMS Posters
  • Mathematics & Music
  • Mathematical Imagery
  • Mathematical Moments

Professional Programs — Resources and opportunities to further your mathematical pursuits

Professional development.

  • Employment Services
  • Mathjobs.org
  • BEGIN Career Initiative
  • Mathprograms.org
  • Mathematical Opportunities Database
  • Research Seminars

Institutional Information and Data

  • Annual Survey of the Mathematical and Statistical Sciences
  • CBMS Survey
  • Other Sources of Data
  • Directory of Institutions in the Mathematical Sciences
  • Professional Directory

Grants & Support

  • AMS-Simons Grants for PUI Faculty
  • Travel Grants
  • Fellowships & Scholarships
  • Epsilon Fund
  • Child Care Grants

Awards & Recognition

  • AMS Prizes & Awards
  • Fellows of the AMS

Education — Resources to support advanced mathematics teaching and learning

For students.

  • Information for Undergraduate and High School Students
  • Research Experiences for Undergraduates (REUs)
  • Considering Grad School
  • Find Grad Programs
  • Applying to Grad School
  • What do Mathematicians Do?

For Teachers

  • Teaching Online
  • Teaching Resources
  • Inclusive Classrooms
  • Assessing Student Learning
  • Education Webinars

For Department Leaders & Mentors

  • Information for Department Leaders
  • paraDIGMS (Diversity in Graduate Mathematical Sciences)

Government Relations — Advocating for the mathematical sciences

Elevating mathematics in congress.

  • Our Mission
  • Letters, Statements, & Legislation
  • Congressional Briefings

Legislative Priorities

  • Federal Issues of Concern
  • Federal Budget Process

Get Involved

  • Advocacy Resources
  • Take Action

DC-Based Fellowships

  • Congressional Fellowship
  • Mass Media Fellowship
  • Catalyzing Advocacy in Science & Engineering (CASE) Fellowship

Giving to the AMS — Your gifts make great things happen for mathematics   Make a Gift

What you can support.

  • The 2020 Fund
  • Next Generation Fund
  • Birman Fellowship for Women Scholars
  • JMM Child Care Grants
  • MathSciNet for Developing Countries

Create a Legacy

  • Make a Tribute Gift
  • Create a Permanent Fund
  • Establish a Prize, Award or Fellowship
  • Bequests and Charitable Estate Planning

Honoring Your Gift

  • Donor Stories
  • Donor Wall of Honor
  • Thomas S. Fiske Society
  • AMS Contributors Society
  • AMS Gardens

Giving Resources

  • AMS Development Committee
  • AMS Gift Acceptance Policy

About the AMS — Advancing research. Connecting the mathematics community.

Our organization.

  • Executive Staff
  • Equity, Diversity, & Inclusion
  • Jobs at AMS
  • Customer Service

Our Governance

  • Board of Trustees
  • Executive Committee

Governance Operations

  • Calendar of Meetings
  • Policy Statements & Guidelines

On March 21 st , the AMS website will be down for regularly scheduled maintenance from 5:00am–8:00am

American Mathematical Society

All articles submitted to this journal are peer-reviewed. The Journal of the AMS  has a single anonymous process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. The AMS uses Centralized Manuscript Processing for initial submissions to AMS journals. The preferred method of submission is to upload a PDF file using the Initial Manuscript Submission form . 

An alternate method is to send one copy of the paper to the following address:

If a paper copy is being forwarded to the AMS, the following information is required with the submission (note that all contact information, particularly email addresses, must be supplied to avoid delay):

  • Name of the journal to which the paper is submitted
  • Name of the corresponding author
  • Contact information including email address and mailing address
  • The author should suggest an appropriate Editor to review the paper

No paper that has been previously published, or is being considered for publication elsewhere, should be submitted to the American Mathematical Society, nor may a paper that is under consideration by the American Mathematical Society be submitted elsewhere.

Included with the footnotes to the paper should be the 2020 Mathematics Subject Classification representing the primary and secondary subjects of the article. 

The AMS Author Resource Center provides TeX Resources, the AMS Style Guide, the Mathematics Subject Classification, and further useful tools for preparing your manuscript. Journal abbreviations used in bibliographies are available for download.

After Acceptance

Once a paper has been accepted for publication, authors should follow the online Submission Instructions.

All authors must submit the Consent to Publish . All authors must agree regarding the Copyright Agreement. If the article is to be published in one of the AMS Open Access journals, authors must agree which Creative Commons License will be selected. Authors are encouraged to use AMS-prepared style files  in preparing their papers.

Useful Tools

  • Language editing services available from Charlesworth Author Services
  • AMS journal article templates from Overleaf
  • Permissions
  • Preparing graphics

Although an abstract is not required upon initial submission, upon acceptance authors will be requested to supply an abstract for the electronic version of this journal. An abstract should be at least one complete sentence and at most 300 words. The AMS offers free worldwide access to the electronic abstracts. No abstracts appear in the printed journal starting in 1998.

Final Summer I 2024 Application Deadline is June 2, 2024.  

Click here to apply.

One__3_-removebg-preview.png

Featured Posts

youngest person to publish research paper

10 Reasons Why You Should Apply to APA’s Internship for High School Students

Stanford STaRS Internship Program - Is It Worth It?

Stanford STaRS Internship Program - Is It Worth It?

youngest person to publish research paper

How to Show Demonstrated Interest - 8 Tips for College Admissions

10 Free Summer Math Programs for High School Students

10 Free Summer Math Programs for High School Students

10 Online Summer Camps for Middle School Students

10 Online Summer Camps for Middle School Students

6 Entrepreneurship Internships that You Should Check out as a High School Student

6 Entrepreneurship Internships that You Should Check out as a High School Student

10 Free Biology Summer Programs for High School Students

10 Free Biology Summer Programs for High School Students

youngest person to publish research paper

10 Free Programs for High School Students in California

NASA's High School Aerospace Scholars - 7 Reasons Why You Should Apply

NASA's High School Aerospace Scholars - 7 Reasons Why You Should Apply

youngest person to publish research paper

10 Film Internships for High School Students

  • 11 min read

15 Journals to Publish Your Research in High School

Pursuing research at the high school level is one of the best ways for you to demonstrate co-curricular academic competence. Getting this study published is an added bonus because it will give your research a certain amount of credibility and backing.

High school students might find guidance on how to conduct their research, but very few are familiar with academic journals that publish high school research. This guide will give you recommendations on where to consider publishing your research. Regardless of your subject of interest, we have options for you here! However, before we get to the recommendations, let’s look at some points to keep in mind while deciding journals and why it is a good decision to publish.

Do I need to publish my research in high school?

Getting your research published is not a necessity. In fact, many of our students do not choose to get their work published and still manage to get into the top college programs across the world.

However, over the course of guiding students to top journals in the last few years, we have to come to see immense value in publication . We now recommend most of our students to aim for publication.

There are three reasons for this. Firstly, we believe that a researcher/scientist’s job is not just to study an area for individual curiosity, but also to communicate the findings to the rest of the world to enhance the understanding of a particular topic. Expanding the frontiers of human knowledge is one of the goals that researchers should strive towards. Secondly, the process of getting research published itself is a whole experience. It is the closest feeling you will get to being a scientist at the high school level. Having your work critically reviewed by Ph.D. researchers in your field is a great learning experience as it will point out the academic loopholes in your work. It has the potential to make you a better student. Incorporating that feedback and communicating with the editorial team is another aspect of this valuable experience.

Finally, getting your work published gives your work credibility to the external world. Whether it is a college application or a summer program, we believe the research that is published will make a stronger impression than unpublished research.

What to look for in a high school research journal?

Deciding what journal works best for you can be confusing if you are new to academic publishing. In this section, we will give you a brief overview of three factors you can take into consideration when deciding what journal works best for you.

First, for many students, prestige is the most important factor when deciding where to submit their research . For STEM students, this preference might lead them to the Columbia Junior Science Journal whereas, for humanities students, the preference might lead to The Concorde Review as the first choice. However, an important thing to keep in mind regarding this preference is that your choice for the most prestigious journal should be followed by the highest quality research . Similar to how unless you have a good profile, applying to Harvard might just end up wasting money and time!

Secondly, the nature of research is another important parameter to be aware of. One of the first things that we ask our Publication Program students is about the nature of research and whether they are conducting original research or a literature review. Based on what the answer is, our recommendation can vary since some journals do not accept literature reviews.

Finally, the time taken to get published is another important metric that students should keep in mind. If you are somebody applying to college in November and are looking for potential journals for your research in August, we would not recommend journals like the Journal of Emerging Investigators which takes almost 7-8 months to publish research.

Now that we have seen the importance of getting published and what to keep in mind, let us look at some of our recommendations:

Journal of Emerging Investigators : The journal of emerging investigators is usually our top recommendation for students who are doing original research in STEM fields. JEI is particularly well known for its extensive review process that can take as long as 7-8 months. The most important thing to keep in mind is that JEI only accepts original hypothesis-driven research. Another important point is that while the JEI website is dominated by research in the STEM fields, they also accept research from other disciplines. For instance, if you conduct original research on financial markets or political preferences based on demographics, you can still submit with the help of these guidelines. Here is our extensive guide to publishing in JEI. Cost: $35 submission fee, need-based fee waiver is available Deadline: Rolling Subject area: STEM mainly but non-STEM is accepted if original research Type of research: Original hypothesis-based research Estimated acceptance rate: 70-75%

National High School Journal of Science : The NHSJS is run and peer-reviewed by high school students around the world, with a scientific advisory board of adult academics. The journal usually takes 1-2 months to decide whether to accept a submission and an additional editing process that lasts up to 1 month. NHSJS accepts practically all science and social science disciplines on a rolling basis. We usually recommend NHSJS as a backup journal given its relatively higher acceptance rate. Based on our experience of guiding students to NHSJS, we estimate that it has an acceptance rate of approximately 70%. Cost: $250 for publication Deadline: Rolling Subject area: All science and social science disciplines Type of research: Original research, literature review Estimated acceptance rate: 60-70%

International Journal of High School Research : IJHSR publishes high school student research work in behavioral and social sciences, technology, engineering, and math, both original research and literature review articles. Six issues are published each year. IJHSR has a rolling submissions window and has open access to the public. It is run by the nonprofit Terra Science and Education. A unique aspect of the IJHSR is that it requires you to contact and acquire 3 professors or post-doctoral scholars who agree to review your paper. This is a fairly time-consuming process, so if you’re aiming to publish in IJHSR, we would recommend that you get started on this early in your research process! Cost: $200 Deadline: Rolling Subject area: All science and social science subjects Type of research: Original Research, Literature Review Estimated acceptance rate: 20-30%

STEM Fellowship Journal : An open-access, peer-reviewed journal for scholarly research by high school and university students in the STEM fields, run by Canadian Science Publishing. The journal accepts original investigations, review articles, and "viewpoints", usually around 5 pages long. While SFJ is a great option, in our experience, we have noticed that the journal can often lag in terms of communication with the students who submit there. Also, while the journal previously reviewed articles on a 2-month timeline, this has extended to 4-5 months over 2022-2023. Please keep this in mind, especially if you are on a tight deadline! Cost: $400 Deadline: Rolling Subject area: All Scientific Disciplines Type of research: Hypothesis Driven Research, Review, Abstract, Original Research Estimated Acceptance Rate: 5-10%

Journal of Student Research : This is a multidisciplinary, and faculty-reviewed journal based in Houston, Texas that publishes research by high school, undergraduate, and graduate students. The journal publishes articles in an array of disciplines and in general, papers on all topics, ranging from applied to theoretical research in any discipline, are eligible for submission. The Journal of Student Research (JSR) is particularly popular among high school students due to the variety of research it accepts. Interested high school students can submit research projects, research articles/posters, review articles, and also AP Capstone Research to Journal of Student Research. We usually recommend students aim for a more selective journal as a target and in case that does not work out, the Journal of Student Research can be a good safety option. In our experience of guiding more than a hundred students through JSR, we believe that the Journal of Student Research (JSR) is best suited as a backup option due to its relatively high acceptance rate. However, please be wary of it’s long publishing timeline (around 6-7 months). Here is our guide to the Journal of Student Research. Cost: $50 to Submit and $200 Publication Cost (if accepted) Deadline: Fixed Deadlines in February, May, August, and November Subject area: All Academic Disciplines Type of research: All types of academic articles Estimated Acceptance Rate: 70-80%

Journal of High School Science : JHSS is a peer-reviewed STEM Journal that publishes research and ideas of high school students. JHSS is also best suited as a backup given its relatively high publication acceptance rate compared to options like STEM Fellowship Journal and Journal of Emerging Investigators. However, in our experience, for students looking for a more secure backup, we would recommend the NHSJS over the JHSS since the JHSS is slightly more selective compared to NHSJS. Cost: Free Deadline: Rolling Subject area: All science and social science subjects Type of research: Original Research, Literature Review Estimated acceptance rate: 20%

Stanford Intersect : Intersect is an international Science, Technology, and Society research journal run by undergraduate students at Stanford University and supported by the Program in STS at Stanford. It publishes research and scholarship on the social factors that shape research and invention. While the website states otherwise, Stanford Intersect does accept research from high school students on topics at the intersection of science, technology, and society. In our experience of guiding students to get published here, we rate this journal as extremely selective and only recommend this option to the best students that we have. We have also noticed that students using AI-based methods in research tends to do particularly well here. Cost: Free Deadline: Rolling Subject area: Science, Technology, and Society Type of research: Research Articles, Papers/Essays, Thesis Chapters, Book Reviews, Editorials, Interviews, Multimedia Estimated Acceptance Rate: < 5% (for high schoolers)

Young Scientist Journal : Young Scientist is another publication that recognizes the achievements of high school scientists. It is published by the Vanderbilt Center for Science Outreach, a group that works in the field of scientific and technological literacy through the establishment of unique partnerships between Vanderbilt University scientists, K-12 educators and students, and the local and global science community. At Lumiere, YSJ is another one of our selective recommendations for students who are producing the highest quality of research. Cost: Free Deadline: December Subject area: Sciences Type of research: Original research, literature review Estimated Acceptance Rate: 10-15%

The Concord Review : The Concord Review is a quarterly journal publishing history essays by high school students. It is the most prestigious journal for high school students in the social sciences. Its prestige comes from its high level of selectivity (currently less than 5%), focus on quality, and long track record of winners going on to top universities. The quality of the published papers is also very high, with the average length of papers in the past year at 9000 words. A qualitative assessment of the quality of the papers also indicates significant time invested and a high level of writing. We have covered this in a lot more detail in a separate post here . Cost: $50 to Submit and $200 Publication Cost (if accepted) Deadline: Fixed Deadlines in February, May, August, and November Subject area: All Academic Disciplines Type of research: All types of academic articles Estimated Acceptance Rate: < 5 %

Schola : Schola is a quarterly journal of humanities and social sciences essays written by high school students worldwide. They publish essays on wide-ranging topics in humanities and social sciences. The Schola accepts essays written on topics in philosophy, history, art history, English, economics, public policy, and sociology. Essay topics and questions must be academic, answerable, and specific to be sufficiently examined in an essay of 4,000-5,000 words. Published essays and their authors are announced in the first week of each issue month: March, June, September, and December. A subscription provides access to all journals in the Archives. Schola is one of our top recommendations for students interested in the social sciences/humanities due to its rigorous review process and selectivity. The quality of work published is also very high. Cost: $120 Deadline: Rolling Subject area: Humanities Type of research: Literature (review/critique, poem, prose), research papers, art (illustration, photography), editorials. Estimated Acceptance Rate: 20%

Hope Humanities Journal : HOPE is an online humanities platform for everyone interested in the humanities. It provides an international and non-profit academic platform, with the mission of advocating for the humanities and recognizing young writers’ achievements. They accept literature (poem, prose), research papers, art (illustration, photography), and editorials. Papers are accepted on a "rolling admission" basis and issues are published on a two-month-per-issue* basis. Submitted works are eligible for at least the next two issues. HOPE is another one of our go-to options for Humanities students after the Schola. Cost: $100 Deadline: Rolling Subject area: Humanities Type of research: Literature (review/critique, poem, prose), research papers, art (illustration, photography), editorials. Estimated Acceptance Rate: 30%

Open Journal of Business and Managemen t (OJBM) : OJBM is an international journal dedicated to the latest advancement in the study of business and management. The goal of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of business and management. We recommend OJBM as a good option for students interested in the field of business studies and management. It is one of the few journals that accept research in business and management from high school students. An important thing to keep in mind is that there is a distinction between business and economics that we are making here i.e. many concepts of economics might not be included within the realm of business. Hence, if you are doing research on financial markets, IJHSR or JEI (mentioned above) might be better options. Cost: $299 Deadline: Rolling Subject area: Economics and Business Type of research: Most types of academic articles - reviews, original research, short reports Estimated Acceptance Rate: 15-20% (for high schoolers)

Curieux : The Curieux Academic Journal is a youth-led nonprofit founded in 2017 to publish research by high school and middle school students. They currently operate in California but have editors from across the nation. Submitting your paper to Curieux is a great way to get experience in the craft of academic writing. They are open to submissions from any academic subject including the sciences and humanities. They encourage all forms of academic writing including but not limited to research papers, review articles, and humanity/social science pieces. Each year, they publish twelve issues: once per month. At Lumiere, we usually recommend Curieux as a backup publication for students pursuing research in the social sciences and humanities since they have a relatively higher acceptance rate. Cost: $150 Deadline: Rolling Subject area: Engineering, Humanities, and Natural Science, Mathematics, and Social Science Type of research: Including but not limited to research papers, review articles, and humanity/social science pieces. Estimated Acceptance Rate: 60-70%

Journal of Research High School : The Journal of Research High School (JRHS) is an open-access online research journal that aims at publishing academic work prepared exclusively by high school researchers. JRHS publishes across science to social science. They publish biannually but release publications each month! For the publication at JRHS, in general, there are four processes of publication such as original formatting and plagiarism check, peer review, revision, and editorial decision. Each process has a different timeline but in general, the overall turnover timeline is approximately 3 - 6 months. Cost: $100 Deadline: Rolling Subject area: Any academic subject including the sciences and humanities Type of research: Original research and significant literature reviews. Estimated Acceptance Rate: 30%

Walt Whitman Journal of Psychology : The WWJOP is an entirely student-led publication in which high-school student-conducted research and literature reviews in the field of psychology are recognized. The Journal reaches hundreds of schools and psychology students around the world and is published bi-annually and electronically. We have found WWJOP to be a fantastic option for Psychology students given that it offers a specialized publication in Psychology at the high school level. It is one of the few journals at this level to offer a subject specialization. Cost: Free Deadline: Rolling Subject area: Psychology Type of research: Original Research, Analysis Pieces, Letters Estimated acceptance rate: 20-30%

Lumiere Research Scholar Program

If you want to build your own independent research paper and get it published, then consider applying to the Lumiere Research Scholar Program . Last year over 2100 students applied for about 500 spots in the program. You can find the application form here.

You can see our admission results here for our students.

Manas is a publication strategy associate at Lumiere Education. He studied public policy and interactive media at NYU and has experience in education consulting.

Cover Image: Stanford Intersect Website

We'd like to tell your readers about The Palo Alto Scholar , Journal of Art + Culture + Innovation + Design. We publish research essays, critical essays and more in the humanities. We are unique in offering fee waivers to make article publication as accessible as possible to all.

You are using an outdated browser. Please upgrade your browser or activate Google Chrome Frame to improve your experience.

Global Citizen

Thanks for signing up as a global citizen. In order to create your account we need you to provide your email address. You can check out our Privacy Policy to see how we safeguard and use the information you provide us with. If your Facebook account does not have an attached e-mail address, you'll need to add that before you can sign up.

This account has been deactivated.

Please contact us at [email protected] if you would like to re-activate your account.

Anaya Lee Willabus is the youngest person to publish a chapter book in US history!

This nine-year-old girl from Brooklyn New York wrote and published her own chapter book titled "The Day Mohan Found His Confidence" .

This record setting book features a boy struggling to balance life at home and at school. It reminds readers of all ages that with a little help from family and friends, anyone can overcome the most challenging struggles.

While Anaya is mostly your typical nine year old, books are sort of her thing. Her mom said that her little superhero started reading at just 2 years old ! One of her favorite reads is I Am Malala: The Girl Who Stood Up for Education and Was Shot by the Taliban (written by one of our favorite global citizens, Malala). Another is US President, Barack Obama’s Dreams from My Father: A Story of Race and Inheritance. Talk about some classy reading!

Nearly two years ago, during a visit to Guyana, Anaya was inspired to write her book.

"When I started writing the book I figured it should be someone that people can relate to because sometimes many of us have confidence issues," she said .

The nine-year-old author is proof that anyone can change the world by changing the people in it-no matter how old you are.

Anaya was one of many young community leaders honored at a recent Brooklyn Borough Hall Black History celebration, but she can be honored throughout the globe because she’s using her passion to make positive changes both locally and globally!

“It’s just so inspirational. Not only for me, but for other kids and that’s amazing,” Anaya said in a recent interview .

What’s next? She wants to change the world and be a teacher in addition to continuing her career as an author!

Hear all about Anaya’s story and her inspiring words of wisdom  here !

Defeat Poverty

Meet Anaya Lee Willabus, America’s Youngest Chapter Book Author

March 7, 2016

youngest person to publish research paper

Cultural Relativity and Acceptance of Embryonic Stem Cell Research

Article sidebar.

youngest person to publish research paper

Main Article Content

There is a debate about the ethical implications of using human embryos in stem cell research, which can be influenced by cultural, moral, and social values. This paper argues for an adaptable framework to accommodate diverse cultural and religious perspectives. By using an adaptive ethics model, research protections can reflect various populations and foster growth in stem cell research possibilities.

INTRODUCTION

Stem cell research combines biology, medicine, and technology, promising to alter health care and the understanding of human development. Yet, ethical contention exists because of individuals’ perceptions of using human embryos based on their various cultural, moral, and social values. While these disagreements concerning policy, use, and general acceptance have prompted the development of an international ethics policy, such a uniform approach can overlook the nuanced ethical landscapes between cultures. With diverse viewpoints in public health, a single global policy, especially one reflecting Western ethics or the ethics prevalent in high-income countries, is impractical. This paper argues for a culturally sensitive, adaptable framework for the use of embryonic stem cells. Stem cell policy should accommodate varying ethical viewpoints and promote an effective global dialogue. With an extension of an ethics model that can adapt to various cultures, we recommend localized guidelines that reflect the moral views of the people those guidelines serve.

Stem cells, characterized by their unique ability to differentiate into various cell types, enable the repair or replacement of damaged tissues. Two primary types of stem cells are somatic stem cells (adult stem cells) and embryonic stem cells. Adult stem cells exist in developed tissues and maintain the body’s repair processes. [1] Embryonic stem cells (ESC) are remarkably pluripotent or versatile, making them valuable in research. [2] However, the use of ESCs has sparked ethics debates. Considering the potential of embryonic stem cells, research guidelines are essential. The International Society for Stem Cell Research (ISSCR) provides international stem cell research guidelines. They call for “public conversations touching on the scientific significance as well as the societal and ethical issues raised by ESC research.” [3] The ISSCR also publishes updates about culturing human embryos 14 days post fertilization, suggesting local policies and regulations should continue to evolve as ESC research develops. [4]  Like the ISSCR, which calls for local law and policy to adapt to developing stem cell research given cultural acceptance, this paper highlights the importance of local social factors such as religion and culture.

I.     Global Cultural Perspective of Embryonic Stem Cells

Views on ESCs vary throughout the world. Some countries readily embrace stem cell research and therapies, while others have stricter regulations due to ethical concerns surrounding embryonic stem cells and when an embryo becomes entitled to moral consideration. The philosophical issue of when the “someone” begins to be a human after fertilization, in the morally relevant sense, [5] impacts when an embryo becomes not just worthy of protection but morally entitled to it. The process of creating embryonic stem cell lines involves the destruction of the embryos for research. [6] Consequently, global engagement in ESC research depends on social-cultural acceptability.

a.     US and Rights-Based Cultures

In the United States, attitudes toward stem cell therapies are diverse. The ethics and social approaches, which value individualism, [7] trigger debates regarding the destruction of human embryos, creating a complex regulatory environment. For example, the 1996 Dickey-Wicker Amendment prohibited federal funding for the creation of embryos for research and the destruction of embryos for “more than allowed for research on fetuses in utero.” [8] Following suit, in 2001, the Bush Administration heavily restricted stem cell lines for research. However, the Stem Cell Research Enhancement Act of 2005 was proposed to help develop ESC research but was ultimately vetoed. [9] Under the Obama administration, in 2009, an executive order lifted restrictions allowing for more development in this field. [10] The flux of research capacity and funding parallels the different cultural perceptions of human dignity of the embryo and how it is socially presented within the country’s research culture. [11]

b.     Ubuntu and Collective Cultures

African bioethics differs from Western individualism because of the different traditions and values. African traditions, as described by individuals from South Africa and supported by some studies in other African countries, including Ghana and Kenya, follow the African moral philosophies of Ubuntu or Botho and Ukama , which “advocates for a form of wholeness that comes through one’s relationship and connectedness with other people in the society,” [12] making autonomy a socially collective concept. In this context, for the community to act autonomously, individuals would come together to decide what is best for the collective. Thus, stem cell research would require examining the value of the research to society as a whole and the use of the embryos as a collective societal resource. If society views the source as part of the collective whole, and opposes using stem cells, compromising the cultural values to pursue research may cause social detachment and stunt research growth. [13] Based on local culture and moral philosophy, the permissibility of stem cell research depends on how embryo, stem cell, and cell line therapies relate to the community as a whole. Ubuntu is the expression of humanness, with the person’s identity drawn from the “’I am because we are’” value. [14] The decision in a collectivistic culture becomes one born of cultural context, and individual decisions give deference to others in the society.

Consent differs in cultures where thought and moral philosophy are based on a collective paradigm. So, applying Western bioethical concepts is unrealistic. For one, Africa is a diverse continent with many countries with different belief systems, access to health care, and reliance on traditional or Western medicines. Where traditional medicine is the primary treatment, the “’restrictive focus on biomedically-related bioethics’” [is] problematic in African contexts because it neglects bioethical issues raised by traditional systems.” [15] No single approach applies in all areas or contexts. Rather than evaluating the permissibility of ESC research according to Western concepts such as the four principles approach, different ethics approaches should prevail.

Another consideration is the socio-economic standing of countries. In parts of South Africa, researchers have not focused heavily on contributing to the stem cell discourse, either because it is not considered health care or a health science priority or because resources are unavailable. [16] Each country’s priorities differ given different social, political, and economic factors. In South Africa, for instance, areas such as maternal mortality, non-communicable diseases, telemedicine, and the strength of health systems need improvement and require more focus. [17] Stem cell research could benefit the population, but it also could divert resources from basic medical care. Researchers in South Africa adhere to the National Health Act and Medicines Control Act in South Africa and international guidelines; however, the Act is not strictly enforced, and there is no clear legislation for research conduct or ethical guidelines. [18]

Some parts of Africa condemn stem cell research. For example, 98.2 percent of the Tunisian population is Muslim. [19] Tunisia does not permit stem cell research because of moral conflict with a Fatwa. Religion heavily saturates the regulation and direction of research. [20] Stem cell use became permissible for reproductive purposes only recently, with tight restrictions preventing cells from being used in any research other than procedures concerning ART/IVF.  Their use is conditioned on consent, and available only to married couples. [21] The community's receptiveness to stem cell research depends on including communitarian African ethics.

c.     Asia

Some Asian countries also have a collective model of ethics and decision making. [22] In China, the ethics model promotes a sincere respect for life or human dignity, [23] based on protective medicine. This model, influenced by Traditional Chinese Medicine (TCM), [24] recognizes Qi as the vital energy delivered via the meridians of the body; it connects illness to body systems, the body’s entire constitution, and the universe for a holistic bond of nature, health, and quality of life. [25] Following a protective ethics model, and traditional customs of wholeness, investment in stem cell research is heavily desired for its applications in regenerative therapies, disease modeling, and protective medicines. In a survey of medical students and healthcare practitioners, 30.8 percent considered stem cell research morally unacceptable while 63.5 percent accepted medical research using human embryonic stem cells. Of these individuals, 89.9 percent supported increased funding for stem cell research. [26] The scientific community might not reflect the overall population. From 1997 to 2019, China spent a total of $576 million (USD) on stem cell research at 8,050 stem cell programs, increased published presence from 0.6 percent to 14.01 percent of total global stem cell publications as of 2014, and made significant strides in cell-based therapies for various medical conditions. [27] However, while China has made substantial investments in stem cell research and achieved notable progress in clinical applications, concerns linger regarding ethical oversight and transparency. [28] For example, the China Biosecurity Law, promoted by the National Health Commission and China Hospital Association, attempted to mitigate risks by introducing an institutional review board (IRB) in the regulatory bodies. 5800 IRBs registered with the Chinese Clinical Trial Registry since 2021. [29] However, issues still need to be addressed in implementing effective IRB review and approval procedures.

The substantial government funding and focus on scientific advancement have sometimes overshadowed considerations of regional cultures, ethnic minorities, and individual perspectives, particularly evident during the one-child policy era. As government policy adapts to promote public stability, such as the change from the one-child to the two-child policy, [30] research ethics should also adapt to ensure respect for the values of its represented peoples.

Japan is also relatively supportive of stem cell research and therapies. Japan has a more transparent regulatory framework, allowing for faster approval of regenerative medicine products, which has led to several advanced clinical trials and therapies. [31] South Korea is also actively engaged in stem cell research and has a history of breakthroughs in cloning and embryonic stem cells. [32] However, the field is controversial, and there are issues of scientific integrity. For example, the Korean FDA fast-tracked products for approval, [33] and in another instance, the oocyte source was unclear and possibly violated ethical standards. [34] Trust is important in research, as it builds collaborative foundations between colleagues, trial participant comfort, open-mindedness for complicated and sensitive discussions, and supports regulatory procedures for stakeholders. There is a need to respect the culture’s interest, engagement, and for research and clinical trials to be transparent and have ethical oversight to promote global research discourse and trust.

d.     Middle East

Countries in the Middle East have varying degrees of acceptance of or restrictions to policies related to using embryonic stem cells due to cultural and religious influences. Saudi Arabia has made significant contributions to stem cell research, and conducts research based on international guidelines for ethical conduct and under strict adherence to guidelines in accordance with Islamic principles. Specifically, the Saudi government and people require ESC research to adhere to Sharia law. In addition to umbilical and placental stem cells, [35] Saudi Arabia permits the use of embryonic stem cells as long as they come from miscarriages, therapeutic abortions permissible by Sharia law, or are left over from in vitro fertilization and donated to research. [36] Laws and ethical guidelines for stem cell research allow the development of research institutions such as the King Abdullah International Medical Research Center, which has a cord blood bank and a stem cell registry with nearly 10,000 donors. [37] Such volume and acceptance are due to the ethical ‘permissibility’ of the donor sources, which do not conflict with religious pillars. However, some researchers err on the side of caution, choosing not to use embryos or fetal tissue as they feel it is unethical to do so. [38]

Jordan has a positive research ethics culture. [39] However, there is a significant issue of lack of trust in researchers, with 45.23 percent (38.66 percent agreeing and 6.57 percent strongly agreeing) of Jordanians holding a low level of trust in researchers, compared to 81.34 percent of Jordanians agreeing that they feel safe to participate in a research trial. [40] Safety testifies to the feeling of confidence that adequate measures are in place to protect participants from harm, whereas trust in researchers could represent the confidence in researchers to act in the participants’ best interests, adhere to ethical guidelines, provide accurate information, and respect participants’ rights and dignity. One method to improve trust would be to address communication issues relevant to ESC. Legislation surrounding stem cell research has adopted specific language, especially concerning clarification “between ‘stem cells’ and ‘embryonic stem cells’” in translation. [41] Furthermore, legislation “mandates the creation of a national committee… laying out specific regulations for stem-cell banking in accordance with international standards.” [42] This broad regulation opens the door for future global engagement and maintains transparency. However, these regulations may also constrain the influence of research direction, pace, and accessibility of research outcomes.

e.     Europe

In the European Union (EU), ethics is also principle-based, but the principles of autonomy, dignity, integrity, and vulnerability are interconnected. [43] As such, the opportunity for cohesion and concessions between individuals’ thoughts and ideals allows for a more adaptable ethics model due to the flexible principles that relate to the human experience The EU has put forth a framework in its Convention for the Protection of Human Rights and Dignity of the Human Being allowing member states to take different approaches. Each European state applies these principles to its specific conventions, leading to or reflecting different acceptance levels of stem cell research. [44]

For example, in Germany, Lebenzusammenhang , or the coherence of life, references integrity in the unity of human culture. Namely, the personal sphere “should not be subject to external intervention.” [45]  Stem cell interventions could affect this concept of bodily completeness, leading to heavy restrictions. Under the Grundgesetz, human dignity and the right to life with physical integrity are paramount. [46] The Embryo Protection Act of 1991 made producing cell lines illegal. Cell lines can be imported if approved by the Central Ethics Commission for Stem Cell Research only if they were derived before May 2007. [47] Stem cell research respects the integrity of life for the embryo with heavy specifications and intense oversight. This is vastly different in Finland, where the regulatory bodies find research more permissible in IVF excess, but only up to 14 days after fertilization. [48] Spain’s approach differs still, with a comprehensive regulatory framework. [49] Thus, research regulation can be culture-specific due to variations in applied principles. Diverse cultures call for various approaches to ethical permissibility. [50] Only an adaptive-deliberative model can address the cultural constructions of self and achieve positive, culturally sensitive stem cell research practices. [51]

II.     Religious Perspectives on ESC

Embryonic stem cell sources are the main consideration within religious contexts. While individuals may not regard their own religious texts as authoritative or factual, religion can shape their foundations or perspectives.

The Qur'an states:

“And indeed We created man from a quintessence of clay. Then We placed within him a small quantity of nutfa (sperm to fertilize) in a safe place. Then We have fashioned the nutfa into an ‘alaqa (clinging clot or cell cluster), then We developed the ‘alaqa into mudgha (a lump of flesh), and We made mudgha into bones, and clothed the bones with flesh, then We brought it into being as a new creation. So Blessed is Allah, the Best of Creators.” [52]

Many scholars of Islam estimate the time of soul installment, marked by the angel breathing in the soul to bring the individual into creation, as 120 days from conception. [53] Personhood begins at this point, and the value of life would prohibit research or experimentation that could harm the individual. If the fetus is more than 120 days old, the time ensoulment is interpreted to occur according to Islamic law, abortion is no longer permissible. [54] There are a few opposing opinions about early embryos in Islamic traditions. According to some Islamic theologians, there is no ensoulment of the early embryo, which is the source of stem cells for ESC research. [55]

In Buddhism, the stance on stem cell research is not settled. The main tenets, the prohibition against harming or destroying others (ahimsa) and the pursuit of knowledge (prajña) and compassion (karuna), leave Buddhist scholars and communities divided. [56] Some scholars argue stem cell research is in accordance with the Buddhist tenet of seeking knowledge and ending human suffering. Others feel it violates the principle of not harming others. Finding the balance between these two points relies on the karmic burden of Buddhist morality. In trying to prevent ahimsa towards the embryo, Buddhist scholars suggest that to comply with Buddhist tenets, research cannot be done as the embryo has personhood at the moment of conception and would reincarnate immediately, harming the individual's ability to build their karmic burden. [57] On the other hand, the Bodhisattvas, those considered to be on the path to enlightenment or Nirvana, have given organs and flesh to others to help alleviate grieving and to benefit all. [58] Acceptance varies on applied beliefs and interpretations.

Catholicism does not support embryonic stem cell research, as it entails creation or destruction of human embryos. This destruction conflicts with the belief in the sanctity of life. For example, in the Old Testament, Genesis describes humanity as being created in God’s image and multiplying on the Earth, referencing the sacred rights to human conception and the purpose of development and life. In the Ten Commandments, the tenet that one should not kill has numerous interpretations where killing could mean murder or shedding of the sanctity of life, demonstrating the high value of human personhood. In other books, the theological conception of when life begins is interpreted as in utero, [59] highlighting the inviolability of life and its formation in vivo to make a religious point for accepting such research as relatively limited, if at all. [60] The Vatican has released ethical directives to help apply a theological basis to modern-day conflicts. The Magisterium of the Church states that “unless there is a moral certainty of not causing harm,” experimentation on fetuses, fertilized cells, stem cells, or embryos constitutes a crime. [61] Such procedures would not respect the human person who exists at these stages, according to Catholicism. Damages to the embryo are considered gravely immoral and illicit. [62] Although the Catholic Church officially opposes abortion, surveys demonstrate that many Catholic people hold pro-choice views, whether due to the context of conception, stage of pregnancy, threat to the mother’s life, or for other reasons, demonstrating that practicing members can also accept some but not all tenets. [63]

Some major Jewish denominations, such as the Reform, Conservative, and Reconstructionist movements, are open to supporting ESC use or research as long as it is for saving a life. [64] Within Judaism, the Talmud, or study, gives personhood to the child at birth and emphasizes that life does not begin at conception: [65]

“If she is found pregnant, until the fortieth day it is mere fluid,” [66]

Whereas most religions prioritize the status of human embryos, the Halakah (Jewish religious law) states that to save one life, most other religious laws can be ignored because it is in pursuit of preservation. [67] Stem cell research is accepted due to application of these religious laws.

We recognize that all religions contain subsets and sects. The variety of environmental and cultural differences within religious groups requires further analysis to respect the flexibility of religious thoughts and practices. We make no presumptions that all cultures require notions of autonomy or morality as under the common morality theory , which asserts a set of universal moral norms that all individuals share provides moral reasoning and guides ethical decisions. [68] We only wish to show that the interaction with morality varies between cultures and countries.

III.     A Flexible Ethical Approach

The plurality of different moral approaches described above demonstrates that there can be no universally acceptable uniform law for ESC on a global scale. Instead of developing one standard, flexible ethical applications must be continued. We recommend local guidelines that incorporate important cultural and ethical priorities.

While the Declaration of Helsinki is more relevant to people in clinical trials receiving ESC products, in keeping with the tradition of protections for research subjects, consent of the donor is an ethical requirement for ESC donation in many jurisdictions including the US, Canada, and Europe. [69] The Declaration of Helsinki provides a reference point for regulatory standards and could potentially be used as a universal baseline for obtaining consent prior to gamete or embryo donation.

For instance, in Columbia University’s egg donor program for stem cell research, donors followed standard screening protocols and “underwent counseling sessions that included information as to the purpose of oocyte donation for research, what the oocytes would be used for, the risks and benefits of donation, and process of oocyte stimulation” to ensure transparency for consent. [70] The program helped advance stem cell research and provided clear and safe research methods with paid participants. Though paid participation or covering costs of incidental expenses may not be socially acceptable in every culture or context, [71] and creating embryos for ESC research is illegal in many jurisdictions, Columbia’s program was effective because of the clear and honest communications with donors, IRBs, and related stakeholders.  This example demonstrates that cultural acceptance of scientific research and of the idea that an egg or embryo does not have personhood is likely behind societal acceptance of donating eggs for ESC research. As noted, many countries do not permit the creation of embryos for research.

Proper communication and education regarding the process and purpose of stem cell research may bolster comprehension and garner more acceptance. “Given the sensitive subject material, a complete consent process can support voluntary participation through trust, understanding, and ethical norms from the cultures and morals participants value. This can be hard for researchers entering countries of different socioeconomic stability, with different languages and different societal values. [72]

An adequate moral foundation in medical ethics is derived from the cultural and religious basis that informs knowledge and actions. [73] Understanding local cultural and religious values and their impact on research could help researchers develop humility and promote inclusion.

IV.     Concerns

Some may argue that if researchers all adhere to one ethics standard, protection will be satisfied across all borders, and the global public will trust researchers. However, defining what needs to be protected and how to define such research standards is very specific to the people to which standards are applied. We suggest that applying one uniform guide cannot accurately protect each individual because we all possess our own perceptions and interpretations of social values. [74] Therefore, the issue of not adjusting to the moral pluralism between peoples in applying one standard of ethics can be resolved by building out ethics models that can be adapted to different cultures and religions.

Other concerns include medical tourism, which may promote health inequities. [75] Some countries may develop and approve products derived from ESC research before others, compromising research ethics or drug approval processes. There are also concerns about the sale of unauthorized stem cell treatments, for example, those without FDA approval in the United States. Countries with robust research infrastructures may be tempted to attract medical tourists, and some customers will have false hopes based on aggressive publicity of unproven treatments. [76]

For example, in China, stem cell clinics can market to foreign clients who are not protected under the regulatory regimes. Companies employ a marketing strategy of “ethically friendly” therapies. Specifically, in the case of Beike, China’s leading stem cell tourism company and sprouting network, ethical oversight of administrators or health bureaus at one site has “the unintended consequence of shifting questionable activities to another node in Beike's diffuse network.” [77] In contrast, Jordan is aware of stem cell research’s potential abuse and its own status as a “health-care hub.” Jordan’s expanded regulations include preserving the interests of individuals in clinical trials and banning private companies from ESC research to preserve transparency and the integrity of research practices. [78]

The social priorities of the community are also a concern. The ISSCR explicitly states that guidelines “should be periodically revised to accommodate scientific advances, new challenges, and evolving social priorities.” [79] The adaptable ethics model extends this consideration further by addressing whether research is warranted given the varying degrees of socioeconomic conditions, political stability, and healthcare accessibilities and limitations. An ethical approach would require discussion about resource allocation and appropriate distribution of funds. [80]

While some religions emphasize the sanctity of life from conception, which may lead to public opposition to ESC research, others encourage ESC research due to its potential for healing and alleviating human pain. Many countries have special regulations that balance local views on embryonic personhood, the benefits of research as individual or societal goods, and the protection of human research subjects. To foster understanding and constructive dialogue, global policy frameworks should prioritize the protection of universal human rights, transparency, and informed consent. In addition to these foundational global policies, we recommend tailoring local guidelines to reflect the diverse cultural and religious perspectives of the populations they govern. Ethics models should be adapted to local populations to effectively establish research protections, growth, and possibilities of stem cell research.

For example, in countries with strong beliefs in the moral sanctity of embryos or heavy religious restrictions, an adaptive model can allow for discussion instead of immediate rejection. In countries with limited individual rights and voice in science policy, an adaptive model ensures cultural, moral, and religious views are taken into consideration, thereby building social inclusion. While this ethical consideration by the government may not give a complete voice to every individual, it will help balance policies and maintain the diverse perspectives of those it affects. Embracing an adaptive ethics model of ESC research promotes open-minded dialogue and respect for the importance of human belief and tradition. By actively engaging with cultural and religious values, researchers can better handle disagreements and promote ethical research practices that benefit each society.

This brief exploration of the religious and cultural differences that impact ESC research reveals the nuances of relative ethics and highlights a need for local policymakers to apply a more intense adaptive model.

[1] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[2] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[3] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk ; Kimmelman, J., Hyun, I., Benvenisty, N.  et al.  Policy: Global standards for stem-cell research.  Nature   533 , 311–313 (2016). https://doi.org/10.1038/533311a

[4] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk

[5] Concerning the moral philosophies of stem cell research, our paper does not posit a personal moral stance nor delve into the “when” of human life begins. To read further about the philosophical debate, consider the following sources:

Sandel M. J. (2004). Embryo ethics--the moral logic of stem-cell research.  The New England journal of medicine ,  351 (3), 207–209. https://doi.org/10.1056/NEJMp048145 ; George, R. P., & Lee, P. (2020, September 26). Acorns and Embryos . The New Atlantis. https://www.thenewatlantis.com/publications/acorns-and-embryos ; Sagan, A., & Singer, P. (2007). The moral status of stem cells. Metaphilosophy , 38 (2/3), 264–284. http://www.jstor.org/stable/24439776 ; McHugh P. R. (2004). Zygote and "clonote"--the ethical use of embryonic stem cells.  The New England journal of medicine ,  351 (3), 209–211. https://doi.org/10.1056/NEJMp048147 ; Kurjak, A., & Tripalo, A. (2004). The facts and doubts about beginning of the human life and personality.  Bosnian journal of basic medical sciences ,  4 (1), 5–14. https://doi.org/10.17305/bjbms.2004.3453

[6] Vazin, T., & Freed, W. J. (2010). Human embryonic stem cells: derivation, culture, and differentiation: a review.  Restorative neurology and neuroscience ,  28 (4), 589–603. https://doi.org/10.3233/RNN-2010-0543

[7] Socially, at its core, the Western approach to ethics is widely principle-based, autonomy being one of the key factors to ensure a fundamental respect for persons within research. For information regarding autonomy in research, see: Department of Health, Education, and Welfare, & National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1978). The Belmont Report. Ethical principles and guidelines for the protection of human subjects of research.; For a more in-depth review of autonomy within the US, see: Beauchamp, T. L., & Childress, J. F. (1994). Principles of Biomedical Ethics . Oxford University Press.

[8] Sherley v. Sebelius , 644 F.3d 388 (D.C. Cir. 2011), citing 45 C.F.R. 46.204(b) and [42 U.S.C. § 289g(b)]. https://www.cadc.uscourts.gov/internet/opinions.nsf/6c690438a9b43dd685257a64004ebf99/$file/11-5241-1391178.pdf

[9] Stem Cell Research Enhancement Act of 2005, H. R. 810, 109 th Cong. (2001). https://www.govtrack.us/congress/bills/109/hr810/text ; Bush, G. W. (2006, July 19). Message to the House of Representatives . National Archives and Records Administration. https://georgewbush-whitehouse.archives.gov/news/releases/2006/07/20060719-5.html

[10] National Archives and Records Administration. (2009, March 9). Executive order 13505 -- removing barriers to responsible scientific research involving human stem cells . National Archives and Records Administration. https://obamawhitehouse.archives.gov/the-press-office/removing-barriers-responsible-scientific-research-involving-human-stem-cells

[11] Hurlbut, W. B. (2006). Science, Religion, and the Politics of Stem Cells.  Social Research ,  73 (3), 819–834. http://www.jstor.org/stable/40971854

[12] Akpa-Inyang, Francis & Chima, Sylvester. (2021). South African traditional values and beliefs regarding informed consent and limitations of the principle of respect for autonomy in African communities: a cross-cultural qualitative study. BMC Medical Ethics . 22. 10.1186/s12910-021-00678-4.

[13] Source for further reading: Tangwa G. B. (2007). Moral status of embryonic stem cells: perspective of an African villager. Bioethics , 21(8), 449–457. https://doi.org/10.1111/j.1467-8519.2007.00582.x , see also Mnisi, F. M. (2020). An African analysis based on ethics of Ubuntu - are human embryonic stem cell patents morally justifiable? African Insight , 49 (4).

[14] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics , 22 (2), 112–122. https://doi.org/10.1111/dewb.12324

[15] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics, 22(2), 112–122. https://doi.org/10.1111/dewb.12324

[16] Jackson, C.S., Pepper, M.S. Opportunities and barriers to establishing a cell therapy programme in South Africa.  Stem Cell Res Ther   4 , 54 (2013). https://doi.org/10.1186/scrt204 ; Pew Research Center. (2014, May 1). Public health a major priority in African nations . Pew Research Center’s Global Attitudes Project. https://www.pewresearch.org/global/2014/05/01/public-health-a-major-priority-in-african-nations/

[17] Department of Health Republic of South Africa. (2021). Health Research Priorities (revised) for South Africa 2021-2024 . National Health Research Strategy. https://www.health.gov.za/wp-content/uploads/2022/05/National-Health-Research-Priorities-2021-2024.pdf

[18] Oosthuizen, H. (2013). Legal and Ethical Issues in Stem Cell Research in South Africa. In: Beran, R. (eds) Legal and Forensic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32338-6_80 , see also: Gaobotse G (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[19] United States Bureau of Citizenship and Immigration Services. (1998). Tunisia: Information on the status of Christian conversions in Tunisia . UNHCR Web Archive. https://webarchive.archive.unhcr.org/20230522142618/https://www.refworld.org/docid/3df0be9a2.html

[20] Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[21] Kooli, C. Review of assisted reproduction techniques, laws, and regulations in Muslim countries.  Middle East Fertil Soc J   24 , 8 (2020). https://doi.org/10.1186/s43043-019-0011-0 ; Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[22] Pang M. C. (1999). Protective truthfulness: the Chinese way of safeguarding patients in informed treatment decisions. Journal of medical ethics , 25(3), 247–253. https://doi.org/10.1136/jme.25.3.247

[23] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[24] Wang, Y., Xue, Y., & Guo, H. D. (2022). Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction.  Frontiers in pharmacology ,  13 , 1013740. https://doi.org/10.3389/fphar.2022.1013740

[25] Li, X.-T., & Zhao, J. (2012). Chapter 4: An Approach to the Nature of Qi in TCM- Qi and Bioenergy. In Recent Advances in Theories and Practice of Chinese Medicine (p. 79). InTech.

[26] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[27] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[28] Zhang, J. Y. (2017). Lost in translation? accountability and governance of Clinical Stem Cell Research in China. Regenerative Medicine , 12 (6), 647–656. https://doi.org/10.2217/rme-2017-0035

[29] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[30] Chen, H., Wei, T., Wang, H.  et al.  Association of China’s two-child policy with changes in number of births and birth defects rate, 2008–2017.  BMC Public Health   22 , 434 (2022). https://doi.org/10.1186/s12889-022-12839-0

[31] Azuma, K. Regulatory Landscape of Regenerative Medicine in Japan.  Curr Stem Cell Rep   1 , 118–128 (2015). https://doi.org/10.1007/s40778-015-0012-6

[32] Harris, R. (2005, May 19). Researchers Report Advance in Stem Cell Production . NPR. https://www.npr.org/2005/05/19/4658967/researchers-report-advance-in-stem-cell-production

[33] Park, S. (2012). South Korea steps up stem-cell work.  Nature . https://doi.org/10.1038/nature.2012.10565

[34] Resnik, D. B., Shamoo, A. E., & Krimsky, S. (2006). Fraudulent human embryonic stem cell research in South Korea: lessons learned.  Accountability in research ,  13 (1), 101–109. https://doi.org/10.1080/08989620600634193 .

[35] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

[36] Association for the Advancement of Blood and Biotherapies.  https://www.aabb.org/regulatory-and-advocacy/regulatory-affairs/regulatory-for-cellular-therapies/international-competent-authorities/saudi-arabia

[37] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia.  BMC medical ethics ,  21 (1), 35. https://doi.org/10.1186/s12910-020-00482-6

[38] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia. BMC medical ethics , 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

Culturally, autonomy practices follow a relational autonomy approach based on a paternalistic deontological health care model. The adherence to strict international research policies and religious pillars within the regulatory environment is a great foundation for research ethics. However, there is a need to develop locally targeted ethics approaches for research (as called for in Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6), this decision-making approach may help advise a research decision model. For more on the clinical cultural autonomy approaches, see: Alabdullah, Y. Y., Alzaid, E., Alsaad, S., Alamri, T., Alolayan, S. W., Bah, S., & Aljoudi, A. S. (2022). Autonomy and paternalism in Shared decision‐making in a Saudi Arabian tertiary hospital: A cross‐sectional study. Developing World Bioethics , 23 (3), 260–268. https://doi.org/10.1111/dewb.12355 ; Bukhari, A. A. (2017). Universal Principles of Bioethics and Patient Rights in Saudi Arabia (Doctoral dissertation, Duquesne University). https://dsc.duq.edu/etd/124; Ladha, S., Nakshawani, S. A., Alzaidy, A., & Tarab, B. (2023, October 26). Islam and Bioethics: What We All Need to Know . Columbia University School of Professional Studies. https://sps.columbia.edu/events/islam-and-bioethics-what-we-all-need-know

[39] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[40] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[41] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[42] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[43] The EU’s definition of autonomy relates to the capacity for creating ideas, moral insight, decisions, and actions without constraint, personal responsibility, and informed consent. However, the EU views autonomy as not completely able to protect individuals and depends on other principles, such as dignity, which “expresses the intrinsic worth and fundamental equality of all human beings.” Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[44] Council of Europe. Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (ETS No. 164) https://www.coe.int/en/web/conventions/full-list?module=treaty-detail&treatynum=164 (forbidding the creation of embryos for research purposes only, and suggests embryos in vitro have protections.); Also see Drabiak-Syed B. K. (2013). New President, New Human Embryonic Stem Cell Research Policy: Comparative International Perspectives and Embryonic Stem Cell Research Laws in France.  Biotechnology Law Report ,  32 (6), 349–356. https://doi.org/10.1089/blr.2013.9865

[45] Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[46] Tomuschat, C., Currie, D. P., Kommers, D. P., & Kerr, R. (Trans.). (1949, May 23). Basic law for the Federal Republic of Germany. https://www.btg-bestellservice.de/pdf/80201000.pdf

[47] Regulation of Stem Cell Research in Germany . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-germany

[48] Regulation of Stem Cell Research in Finland . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-finland

[49] Regulation of Stem Cell Research in Spain . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-spain

[50] Some sources to consider regarding ethics models or regulatory oversights of other cultures not covered:

Kara MA. Applicability of the principle of respect for autonomy: the perspective of Turkey. J Med Ethics. 2007 Nov;33(11):627-30. doi: 10.1136/jme.2006.017400. PMID: 17971462; PMCID: PMC2598110.

Ugarte, O. N., & Acioly, M. A. (2014). The principle of autonomy in Brazil: one needs to discuss it ...  Revista do Colegio Brasileiro de Cirurgioes ,  41 (5), 374–377. https://doi.org/10.1590/0100-69912014005013

Bharadwaj, A., & Glasner, P. E. (2012). Local cells, global science: The rise of embryonic stem cell research in India . Routledge.

For further research on specific European countries regarding ethical and regulatory framework, we recommend this database: Regulation of Stem Cell Research in Europe . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-europe   

[51] Klitzman, R. (2006). Complications of culture in obtaining informed consent. The American Journal of Bioethics, 6(1), 20–21. https://doi.org/10.1080/15265160500394671 see also: Ekmekci, P. E., & Arda, B. (2017). Interculturalism and Informed Consent: Respecting Cultural Differences without Breaching Human Rights.  Cultura (Iasi, Romania) ,  14 (2), 159–172.; For why trust is important in research, see also: Gray, B., Hilder, J., Macdonald, L., Tester, R., Dowell, A., & Stubbe, M. (2017). Are research ethics guidelines culturally competent?  Research Ethics ,  13 (1), 23-41.  https://doi.org/10.1177/1747016116650235

[52] The Qur'an  (M. Khattab, Trans.). (1965). Al-Mu’minun, 23: 12-14. https://quran.com/23

[53] Lenfest, Y. (2017, December 8). Islam and the beginning of human life . Bill of Health. https://blog.petrieflom.law.harvard.edu/2017/12/08/islam-and-the-beginning-of-human-life/

[54] Aksoy, S. (2005). Making regulations and drawing up legislation in Islamic countries under conditions of uncertainty, with special reference to embryonic stem cell research. Journal of Medical Ethics , 31: 399-403.; see also: Mahmoud, Azza. "Islamic Bioethics: National Regulations and Guidelines of Human Stem Cell Research in the Muslim World." Master's thesis, Chapman University, 2022. https://doi.org/10.36837/ chapman.000386

[55] Rashid, R. (2022). When does Ensoulment occur in the Human Foetus. Journal of the British Islamic Medical Association , 12 (4). ISSN 2634 8071. https://www.jbima.com/wp-content/uploads/2023/01/2-Ethics-3_-Ensoulment_Rafaqat.pdf.

[56] Sivaraman, M. & Noor, S. (2017). Ethics of embryonic stem cell research according to Buddhist, Hindu, Catholic, and Islamic religions: perspective from Malaysia. Asian Biomedicine,8(1) 43-52.  https://doi.org/10.5372/1905-7415.0801.260

[57] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[58] Lecso, P. A. (1991). The Bodhisattva Ideal and Organ Transplantation.  Journal of Religion and Health ,  30 (1), 35–41. http://www.jstor.org/stable/27510629 ; Bodhisattva, S. (n.d.). The Key of Becoming a Bodhisattva . A Guide to the Bodhisattva Way of Life. http://www.buddhism.org/Sutras/2/BodhisattvaWay.htm

[59] There is no explicit religious reference to when life begins or how to conduct research that interacts with the concept of life. However, these are relevant verses pertaining to how the fetus is viewed. (( King James Bible . (1999). Oxford University Press. (original work published 1769))

Jerimiah 1: 5 “Before I formed thee in the belly I knew thee; and before thou camest forth out of the womb I sanctified thee…”

In prophet Jerimiah’s insight, God set him apart as a person known before childbirth, a theme carried within the Psalm of David.

Psalm 139: 13-14 “…Thou hast covered me in my mother's womb. I will praise thee; for I am fearfully and wonderfully made…”

These verses demonstrate David’s respect for God as an entity that would know of all man’s thoughts and doings even before birth.

[60] It should be noted that abortion is not supported as well.

[61] The Vatican. (1987, February 22). Instruction on Respect for Human Life in Its Origin and on the Dignity of Procreation Replies to Certain Questions of the Day . Congregation For the Doctrine of the Faith. https://www.vatican.va/roman_curia/congregations/cfaith/documents/rc_con_cfaith_doc_19870222_respect-for-human-life_en.html

[62] The Vatican. (2000, August 25). Declaration On the Production and the Scientific and Therapeutic Use of Human Embryonic Stem Cells . Pontifical Academy for Life. https://www.vatican.va/roman_curia/pontifical_academies/acdlife/documents/rc_pa_acdlife_doc_20000824_cellule-staminali_en.html ; Ohara, N. (2003). Ethical Consideration of Experimentation Using Living Human Embryos: The Catholic Church’s Position on Human Embryonic Stem Cell Research and Human Cloning. Department of Obstetrics and Gynecology . Retrieved from https://article.imrpress.com/journal/CEOG/30/2-3/pii/2003018/77-81.pdf.

[63] Smith, G. A. (2022, May 23). Like Americans overall, Catholics vary in their abortion views, with regular mass attenders most opposed . Pew Research Center. https://www.pewresearch.org/short-reads/2022/05/23/like-americans-overall-catholics-vary-in-their-abortion-views-with-regular-mass-attenders-most-opposed/

[64] Rosner, F., & Reichman, E. (2002). Embryonic stem cell research in Jewish law. Journal of halacha and contemporary society , (43), 49–68.; Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[65] Schenker J. G. (2008). The beginning of human life: status of embryo. Perspectives in Halakha (Jewish Religious Law).  Journal of assisted reproduction and genetics ,  25 (6), 271–276. https://doi.org/10.1007/s10815-008-9221-6

[66] Ruttenberg, D. (2020, May 5). The Torah of Abortion Justice (annotated source sheet) . Sefaria. https://www.sefaria.org/sheets/234926.7?lang=bi&with=all&lang2=en

[67] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[68] Gert, B. (2007). Common morality: Deciding what to do . Oxford Univ. Press.

[69] World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA , 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 Declaration of Helsinki – WMA – The World Medical Association .; see also: National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. (1979).  The Belmont report: Ethical principles and guidelines for the protection of human subjects of research . U.S. Department of Health and Human Services.  https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html

[70] Zakarin Safier, L., Gumer, A., Kline, M., Egli, D., & Sauer, M. V. (2018). Compensating human subjects providing oocytes for stem cell research: 9-year experience and outcomes.  Journal of assisted reproduction and genetics ,  35 (7), 1219–1225. https://doi.org/10.1007/s10815-018-1171-z https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063839/ see also: Riordan, N. H., & Paz Rodríguez, J. (2021). Addressing concerns regarding associated costs, transparency, and integrity of research in recent stem cell trial. Stem Cells Translational Medicine , 10 (12), 1715–1716. https://doi.org/10.1002/sctm.21-0234

[71] Klitzman, R., & Sauer, M. V. (2009). Payment of egg donors in stem cell research in the USA.  Reproductive biomedicine online ,  18 (5), 603–608. https://doi.org/10.1016/s1472-6483(10)60002-8

[72] Krosin, M. T., Klitzman, R., Levin, B., Cheng, J., & Ranney, M. L. (2006). Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa.  Clinical trials (London, England) ,  3 (3), 306–313. https://doi.org/10.1191/1740774506cn150oa

[73] Veatch, Robert M.  Hippocratic, Religious, and Secular Medical Ethics: The Points of Conflict . Georgetown University Press, 2012.

[74] Msoroka, M. S., & Amundsen, D. (2018). One size fits not quite all: Universal research ethics with diversity.  Research Ethics ,  14 (3), 1-17.  https://doi.org/10.1177/1747016117739939

[75] Pirzada, N. (2022). The Expansion of Turkey’s Medical Tourism Industry.  Voices in Bioethics ,  8 . https://doi.org/10.52214/vib.v8i.9894

[76] Stem Cell Tourism: False Hope for Real Money . Harvard Stem Cell Institute (HSCI). (2023). https://hsci.harvard.edu/stem-cell-tourism , See also: Bissassar, M. (2017). Transnational Stem Cell Tourism: An ethical analysis.  Voices in Bioethics ,  3 . https://doi.org/10.7916/vib.v3i.6027

[77] Song, P. (2011) The proliferation of stem cell therapies in post-Mao China: problematizing ethical regulation,  New Genetics and Society , 30:2, 141-153, DOI:  10.1080/14636778.2011.574375

[78] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[79] International Society for Stem Cell Research. (2024). Standards in stem cell research . International Society for Stem Cell Research. https://www.isscr.org/guidelines/5-standards-in-stem-cell-research

[80] Benjamin, R. (2013). People’s science bodies and rights on the Stem Cell Frontier . Stanford University Press.

Mifrah Hayath

SM Candidate Harvard Medical School, MS Biotechnology Johns Hopkins University

Olivia Bowers

MS Bioethics Columbia University (Disclosure: affiliated with Voices in Bioethics)

Article Details

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License .

View the latest institution tables

View the latest country/territory tables

These 10 institutions published the most papers in Nature and Science in 2018

From CRISPR to CLARITY, here are some of the most high-profile studies.

Gemma Conroy, Bec Crew

youngest person to publish research paper

Gene-editing tech, CRISPR-Cas9, featured in one of Harvard's most widely discussed Nature papers in 2017. Credit: Meletios Verras/Getty Images

3 September 2019

youngest person to publish research paper

Meletios Verras/Getty Images

Gene-editing tech, CRISPR-Cas9, featured in one of Harvard's most widely discussed Nature papers in 2017.

The journals Nature and Science are where some of the highest quality research is showcased to the world.

The institutions listed below were the largest contributors to papers published in Nature and Science in 2018, as tracked by the Nature Index.

View the Nature Index 2019 Annual Tables for Nature and Science .

1. Harvard University

Fractional count: 70.67 (-15.3%), Article count: 210

No research institute beats Harvard University for papers published in Nature and Science .

As one of the oldest universities in the United States , and one of the world’s leading higher education institutions, Harvard has a storied history of revolutionary discoveries, including the smallpox vaccine, anaesthesia, and oral contraception.

More recently, widely discussed studies by Harvard scientists include a 2017 Nature paper that described a method for storing digital data in bacterial genomes using CRISPR-Cas9 gene-editing technology, and a Science paper this year , in which researchers from Harvard’s Institute for Quantitative Social Science analyzed the effect of fake news on Twitter during the 2016 US presidential election.

2. Stanford University

Fractional Count: 39.85 (-24.3%); Article Count: 100

Stanford University appears in the upper echelons of many of the Nature Index Annual Tables rankings, including chemistry, life sciences, the physical sciences, and academic institutions. It’s also the second most prolific publisher in Nature and Science .

Top authors at Stanford include bioengineer and neuroscientist, Karl Deisseroth , whose 2013 Nature paper on a new technology named CLARITY describes how mammalian brains can be rendered “clear as Jell-O” for access by molecular probes, as The New York Times put it .

Computer scientist, Fei-Fei Li, co-director of Stanford's Human-Centered AI Institute and Vision and Learning Lab, is one of the most prolific researchers in the field of AI, and has published on machine learning, deep learning, computer vision and cognitive neuroscience.

3. Massachusetts Institute of Technology

Fractional count: 37.69 (13.3%), Article count: 130

As one of the world’s most prestigious higher education institutions, MIT has been at the frontier of research for more than 150 years, its close ties with industry fostering an emphasis on entrepreneurship and applied science.

With 12,707 faculty and staff on campus and an annual budget of more than US$3.5 billion (2018), almost 85% of MIT’s undergraduates engage in frontline, faculty-led research.

One of MIT’s most talked-about studies in 2018 was a Science paper that analysed the spread of true and false news. Garnering an Altmetrics score of more than 9,600, which includes more than 8,000 tweets and 360 news stories, it lent support to the adage: lies spread faster than the truth.

A 2018 Nature paper by MIT researchers on the ‘Moral Machine experiment’ also drew significant attention from the wider public, posing complex questions about how AI in future will make moral decisions.

4. Max Planck Society

Fractional Count: 32.35 (-15%) Article count: 139

From nuclear fission to the theory of relativity, Germany's Max Planck Society has been the birthplace of some of the most important discoveries in science.

Among Max Planck’s Nature and Science findings published last year were a new antiretroviral treatment for HIV , graphene nanoribbons , and a new method for capturing changes in RNA .

One of Max Planck’s most highly cited Nature papers of 2018 presented the most precise measurements of the electron ever made. The findings support the standard model of particle physics, which proposes that electrons maintain a near perfect spherical shape.

Along with an international team, Max Planck researchers published a paper in Science last year that revealed the source of cosmic neutrinos, a type of high-energy particle that travels over vast distances. The study found that neutrinos originate from blazars, a type of galaxy powered by supermassive black holes.

5. University of California, Berkeley

Fractional count: 24.30 (39.4%), Article count: 78

Credited for the discovery or co-discovery of 16 elements — more than any other university — the University of California, Berkeley (UC Berkeley) has a well-established history of scientific advances. You can see its fingerprints on 97 berkelium (Bk), 98 californium (Cf) and 95 americium (Am).

Among its most highly-cited Nature and Science papers of last year were reports on the genetic basis of psychiatric disorders ; a possible cause of fast radio bursts ; and cobalt-free batteries .

In February 2018 , UC Berkeley researchers were involved in the development of genome-editing tool that can detect human papillomavirus with great sensitivity. The study was the institution’s most highly-cited Science paper of that year.

A paper published in Nature also attracted a lot of attention in 2018, when UC Berkeley researchers, along with an international team, described a microchip that uses light to transmit data. The new device is faster and more efficient than conventional silicon chip technologies.

6. University of California, Los Angeles

Fractional Count: 21.11 (82.1%), Article count: 67

Having just celebrated its 100th birthday, the University of California, Los Angeles (UCLA) is one of the youngest universities in Nature Index’s top 10 tables, and yet it receives the most student applications of any university in the US.

Key papers published in Science last year include a study that revealed how certain psychiatric disorders share global gene expression patterns, and one describing how UCLA engineers 3D-printed an AI device that identifies objects at the speed of light, a promising development for medicine, robotics and security .

As vice-chancellor for research, Roger Wakimoto, says, UCLA’s growth and achievements mirror the trajectory of the city it calls home.

“I believe the institution’s success is based on its strong commitment to teaching, recruiting and retaining some of the most talented researchers in the world, and having a close and synergistic relationship with the city of Los Angeles.”

7. Yale University

Fractional count: 19.75 (36.8%), Article count: 57

From finding evidence of time crystals to discovering how gut bacteria cause autoimmune disease, Yale University’s research consistently breaks ground. As one of the oldest universities in the US, it’s also built a strong record of highly-cited papers published in the world’s leading scientific journals.

Last year, Yale astronomers made headlines when they discovered that the galaxy NGC 1052-DF2 contained almost no dark matter, challenging the assumption that it’s essential for the formation of galaxies. The study was one of Yale’s most talked-about Nature papers of 2018.

A Science study involving Yale researchers on how household products contribute to air pollution also sparked conversation last year. The team found that cleaning products, perfumes and shampoos rival transport as major emissions sources.

8. Columbia University in the City of New York

Fractional count: 19.67 (-4.3%), Article count: 65

Established 265 years ago by royal charter of King George II of England, Columbia University is the oldest institution of higher learning in New York City and the fifth oldest in the US.

With more than 200 research centres and institutes, 350 new inventions each year and 84 Nobel laureates, Columbia is at the forefront of scientific discovery.

In 2018, Columbia University produced 65 papers in Nature and Science , placing it in eighth place in this ranking. The institution’s research performance is particularly strong in the life sciences, which accounts for around half of its overall output.

Last year, researchers from Columbia co-authored a study suggesting that 60% of people with European descent living in the US can be genetically identified using available genetic information, even if they have not undergone genetic testing.

Published in Science , the findings highlight the need for strategies that safeguard genetic privacy.

9. University of Oxford

Fractional count: 19.56 (73.6%), Article count: 73

The University of Oxford is the oldest in the English-speaking world, with teaching dating back as far as 1096. Today, it maintains its prestigious reputation with eighth place among the leading academic institutions in the Nature Index.

The largest share of Oxford’s scientific output is in the life sciences, with papers in the discipline contributing around one-third of its output.

Research funding provided by councils, trusts and industry is Oxford’s largest source of income, accounting for 26% of its funds — the highest research income of all the United Kingdom's universities.

Oxford is also home to the Beecroft Building, a new US$64-million facility dedicated to experimental and theoretical physics with laboratories designed for making precise measurements at the atomic level.

In 2018, Oxford researchers co-authored an influential analysis of how to reduce the environmental impacts of food. The paper, published in Science , triggered widespread debate about food choices, such as avoiding dairy and meat.

10. Swiss Federal Institute of Technology Zurich

Fractional count: 19.23 (29.1%), Article count: 55

Boasting 21 Nobel Prize winners, two Fields medallists and a Turing Award recipient, the Swiss Federal Institute of Technology Zurich (ETH Zurich) has built a reputation for trailblazing research over the past 160 years.

The technical and scientific university is also renowned for its ability to produce highly-cited research, taking tenth place among the top institutions in Nature and Science papers.

Among the most talked-about papers from the university are predictions of increased marine heatwaves under climate change; a technique for transmitting quantum information ; and detailed images of proteins involved in opioid signalling.

In January 2018 , researchers at ETH Zurich discovered how a particular group of nanocrystals are able to emit a bright light. The study, which was the most highly-cited Nature article from the institution that year, could have a range of applications in materials science, from data transmission to supercomputers.

The top 10 academic institutions in 2018: normalized

The top 10 academic institutions in 2018

The top 10 countries for scientific research in 2018

Correction: Text amended to remove "in the 21 century" from the opening sentence of the Max Planck Society's profile.

ORIGINAL RESEARCH article

This article is part of the research topic.

Sentiments and economic decision-making

Conveniently Pessimistic: Manipulating Beliefs to Excuse Selfishness in Charitable Giving Provisionally Accepted

  • 1 Utah State University, United States

The final, formatted version of the article will be published soon.

This paper demonstrates how people can manipulate their beliefs in order to obtain the self-image of an altruistic person. I present an online experiment in which subjects need to decide whether to behave altruistically or selfishly in an ambiguous environment. Due to the nature of ambiguity in this environment, those who are pessimistic have a legitimate reason to behave selfishly. Thus, subjects who are selfish but like to think of themselves as altruistic have an incentive to overstate their pessimism. In the experiment, I ask subjects how optimistic or pessimistic they feel about an ambiguous probability and then, through a separate task, I elicit their true beliefs about the same probability. I find that selfish subjects claim to be systematically more pessimistic than they truly are whereas altruistic subjects report their pessimism (or optimism) truthfully. Given the experiment design, the only plausible explanation for this discrepancy is that selfish subjects deliberately overstate their pessimism in order to maintain the self-image of an altruistic person. Altruistic subjects, whose behavior has already proven their altruism, have no such need for belief manipulation.

Keywords: self-deception, self-image, Altruism, Belief Manipulation C91, D82, D83, D84

Received: 04 Apr 2024; Accepted: 17 May 2024.

Copyright: © 2024 Samad. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Zeeshan Samad, Utah State University, Logan, United States

People also looked at

This paper is in the following e-collection/theme issue:

Published on 16.5.2024 in Vol 26 (2024)

Person-Generated Health Data in Women’s Health: Scoping Review

Authors of this article:

Author Orcid Image

  • Jalisa Lynn Karim 1 , BA, BMath   ; 
  • Rachel Wan 1 , BSc, BSN, RN   ; 
  • Rhea S Tabet 2 , BSc   ; 
  • Derek S Chiu 3 , BSc, MSc   ; 
  • Aline Talhouk 1 , BA, MSc, PhD  

1 Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada

2 Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada

3 Department of Molecular Oncology, University of British Columbia, Vancouver, BC, Canada

Corresponding Author:

Aline Talhouk, BA, MSc, PhD

Department of Obstetrics and Gynaecology

University of British Columbia

593 - 828 West 10th Ave

Vancouver, BC, V5Z 1M9

Phone: 1 604 875 3111

Email: [email protected]

Background: The increased pervasiveness of digital health technology is producing large amounts of person-generated health data (PGHD). These data can empower people to monitor their health to promote prevention and management of disease. Women make up one of the largest groups of consumers of digital self-tracking technology.

Objective: In this scoping review, we aimed to (1) identify the different areas of women’s health monitored using PGHD from connected health devices, (2) explore personal metrics collected through these technologies, and (3) synthesize facilitators of and barriers to women’s adoption and use of connected health devices.

Methods: Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for scoping reviews, we searched 5 databases for articles published between January 1, 2015, and February 29, 2020. Papers were included if they targeted women or female individuals and incorporated digital health tools that collected PGHD outside a clinical setting.

Results: We included a total of 406 papers in this review. Articles on the use of PGHD for women steadily increased from 2015 to 2020. The health areas that the articles focused on spanned several topics, with pregnancy and the postpartum period being the most prevalent followed by cancer. Types of digital health used to collect PGHD included mobile apps, wearables, websites, the Internet of Things or smart devices, 2-way messaging, interactive voice response, and implantable devices. A thematic analysis of 41.4% (168/406) of the papers revealed 6 themes regarding facilitators of and barriers to women’s use of digital health technology for collecting PGHD: (1) accessibility and connectivity, (2) design and functionality, (3) accuracy and credibility, (4) audience and adoption, (5) impact on community and health service, and (6) impact on health and behavior.

Conclusions: Leading up to the COVID-19 pandemic, the adoption of digital health tools to address women’s health concerns was on a steady rise. The prominence of tools related to pregnancy and the postpartum period reflects the strong focus on reproductive health in women’s health research and highlights opportunities for digital technology development in other women’s health topics. Digital health technology was most acceptable when it was relevant to the target audience, was seen as user-friendly, and considered women’s personalization preferences while also ensuring accuracy of measurements and credibility of information. The integration of digital technologies into clinical care will continue to evolve, and factors such as liability and health care provider workload need to be considered. While acknowledging the diversity of individual needs, the use of PGHD can positively impact the self-care management of numerous women’s health journeys. The COVID-19 pandemic has ushered in increased adoption and acceptance of digital health technology. This study could serve as a baseline comparison for how this field has evolved as a result.

International Registered Report Identifier (IRRID): RR2-10.2196/26110

Introduction

The practice of keeping notes to monitor one’s health is not a recent phenomenon. Individuals have long recognized the benefits of tracking various health aspects, including the ability to be more active participants in managing their health, gaining a more complete picture of their health, and reducing the frequency of in-person appointments; however, this tracking was previously done through paper logs [ 1 ]. Today, with the proliferation of digital tools, self-tracking has significantly evolved and become more prevalent. The increasing pervasiveness of technology, particularly mobile phones, has seamlessly integrated it into our daily lives, making self-tracking more accessible and convenient than ever before [ 2 ]. Connected digital health technologies such as smartphones, wearables (eg, smartwatches), sensors, the Internet of Things (eg, internet-enabled weight scales), and web-based applications have permeated society and are increasingly adopted to collect and track health data. In 2021, a total of 87% of Canadians owned a smartphone, up by 73% from 2009 [ 3 ]. With >350,000 digital health apps accessible via these smartphones [ 4 ], approximately two-thirds of Canadians digitally track at least one aspect of their health [ 5 ]; similar statistics have been reported in the United States [ 6 ]. Moreover, since the introduction and popularization of fitness trackers in 2010, sensors and wearable devices have increasingly become part of daily life [ 2 ]. During the global COVID-19 pandemic, self-tracking took on even greater significance [ 7 , 8 ]. With the heightened awareness of health and the need for proactive measures, individuals have turned to self-tracking to monitor their well-being and make informed decisions. With this transformation, self-tracking has transcended its previous boundaries, offering individuals new opportunities to optimize their well-being and ushering in a new era of personalized health care [ 9 - 11 ].

Digital health tools have revolutionized the active and passive collection of health data through various applications and wearable devices. These various digital health tools collect and generate an unprecedented amount of data that can be used to glean insights into one’s health. Person-generated health data (PGHD), which are clinically relevant data captured outside traditional care settings [ 12 ], provide valuable insights that empower users to self-monitor and reflect on their health. PGHD can refer to any data collected from wearable and smart devices as well as self-input information into platforms such as mobile apps and websites. By leveraging digital technologies, individuals can collect and store their health data, enabling them to actively manage their own health and monitor chronic conditions. Furthermore, the integration of these data with research presents an opportunity to improve the patients’ experience and enhance personalized medicine. The recognition of this opportunity has started to take shape with patient-reported outcome measures and patient-reported experience measures being increasingly recognized as essential information to assess quality of care and prioritize patient-centered approaches and with mandatory assessment as part of clinical trials [ 13 ]. Seamlessly linking PGHD that are captured outside traditional care settings with clinical data and disease models can unlock new possibilities for tailored treatments and predictive informatics. The integration of digital health tools not only facilitates patient-provider communication but also offers opportunities for education, increased awareness, self-tracking, and self-monitoring without burdening health care resources. By focusing on the individual’s experience, personalization, and prevention, digital health tools contribute to a patient-centered care paradigm that aims to optimize health care outcomes and improve overall well-being while empowering patients to take charge of their health.

In recent years, the emergence of femtech, defined as technology-driven solutions specifically designed to address women’s health needs and concerns, has revolutionized the landscape of self-tracking and health care for women [ 14 ]. Femtech encompasses a wide range of digital tools, such as period-tracking apps, fertility monitors, pregnancy trackers, and menopause management platforms. These innovative solutions empower women to track and manage their reproductive health, menstrual cycles, and overall well-being with greater accuracy and ease. Femtech has not only provided women with personalized insights into their bodies but has also helped break taboos and encouraged open conversations about topics that were once stigmatized or ignored. The rapid growth of femtech has promoted access to women’s health information, greater autonomy in decision-making, and enhanced overall health care experiences for women worldwide. It has become an integral part of the self-tracking movement, demonstrating the transformative power of technology in promoting women’s health and well-being.

In this study, we reviewed the use of digital tools and PGHD in women’s health research, focusing on articles published between January 1, 2015, and February 29, 2020, before the COVID-19 pandemic. Our review encompassed various connected health devices, which included both passive data collection devices such as wearable sensors and active input devices such as smartphone apps and websites. This review sought to accomplish the following:

  • Identify the different areas of women’s health and health-related behaviors monitored using PGHD from connected health devices.
  • Explore personal metrics collected through these technologies.
  • Synthesize facilitators and barriers that impact women’s adoption and use of connected health devices in managing their health.

This scoping review was conducted based on our previously published protocol [ 15 ]. We adopted the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines [ 16 ]. The completed checklist is provided in Multimedia Appendix 1 [ 16 ].

Search Strategy

The search strategy was designed in close collaboration with a reference librarian with input from the authors (JLK and AT). We searched a total of 5 databases: MEDLINE, Embase, APA PsycINFO, CINAHL Complete, and Web of Science Core Collection. Initial searches were completed in early March 2020. Searches were limited to articles published in 2015 or later because publications with the keyword “digital health” started to emerge in the literature around that time [ 17 ], and with the fast evolution of the field, previous articles may not be relevant to the current landscape. Keywords and subject headings were designed to search the literature for the intersection of the following 4 topics: women, health, digital devices, and tracking. The full search strategy, including a full list of search terms, was published with the protocol [ 15 ] and is available in Multimedia Appendix 2 .

Eligibility Criteria

We were interested in digital technologies and interventions targeting women and people assigned female at birth. To be included in the review, studies needed to specifically target women, focus on female-only health topics (eg, menstruation), or only include female participants. We included a variety of publication types but excluded conference abstracts and conference reviews, editorials, letters, and comments due to the limited details in such literature.

We excluded articles that presented digital health tools designed for health care providers as we were primarily interested in devices and apps that women can engage with outside a clinical setting. Articles only discussing the use of real-time consultations, whether through video, phone, or web-based chat, were excluded. We excluded articles that described digital health tools used solely for educational purposes; to maintain the focus of the review on tracking or monitoring one’s data for health, devices must have allowed users to input personal health data.

The complete inclusion and exclusion criteria are presented in Textbox 1 . We decided to retain the original inclusion end date of February 29, 2020, to maintain a focus on the literature before the COVID-19 pandemic and avoid potential complexities caused by pandemic-related disruptions in research and health care practices. Concentrating on prepandemic literature also established a clear baseline for future comparisons and allowed us to maintain feasibility of completion without compromising quality given the broad scope of the review.

Inclusion criteria

  • Published between January 1, 2015, and February 29, 2020
  • Refers to a health issue that pertains only to women or comprises only female participants of any age
  • Includes the use of connected health tools for tracking or monitoring some aspect of health, which could include smartphone apps, wearable devices, the Internet of Things (eg, Bluetooth- or internet-enabled glucometers, blood pressure cuffs, and weight scales), and implantable devices
  • Involves data collection from the user of the connected health tool (ie, the user either manually inputs data into the device or they are automatically uploaded)
  • The user must be able to interact with the app or device on her own at home (outside a clinical setting)
  • Available in English

Exclusion criteria

  • Not available in English
  • Conference abstracts, conference reviews, editorials, letters, or comments
  • Study media releases and user reviews of specific applications
  • Research conducted on animals
  • Research involving male participants
  • Tracking of infants and children unless tracking breastfeeding (because breastfeeding is directly related to the mother’s health and body)
  • Devices or apps that are meant for health care provider use or use in a clinical setting only or cannot be used independently without a health care provider present
  • Digital health tools that are only for educational or informational purposes and do not allow the user to enter or track her own data (ie, no information exchange)
  • Telemedicine services (eg, live video consultations with health care providers)

Study Selection

We imported the results from the database searches to the Covidence systematic review software (Veritas Health Innovation). Covidence detected records believed to be duplicates, and these were manually checked before removing them. In addition, some articles were manually recognized as duplicates during the screening process and were subsequently tagged as duplicates and removed. Screening was conducted independently by at least 2 reviewers (JLK, RST, and AT) at both the abstract screening stage and the full-text screening stage. We attempted to contact the corresponding authors of articles that passed abstract screening when we were unable to locate the full text. Conflicts at either stage were discussed and agreed upon among the 3 authors involved in the screening process.

Data Charting and Deviations From the Protocol

The final list of data charting elements is provided in Textbox 2 . Data charting for all elements except for usability and acceptability was conducted using Google Sheets created by the study team. The categories for different data charting options were initially created based on a small subset of articles and were discussed among the authors involved in the charting process. The team met regularly throughout the data charting process to discuss and refine coding categories that best summarized the data. Starting with more granular categories and later combining them into broader concepts was necessary to summarize the number of articles included in this review. For each article included, data were charted by one reviewer (RW or RST) and verified for accuracy by a second reviewer (JLK). Data were summarized in bar graphs, maps, and tables (JLK, RST, and DSC), as presented in the following sections. For the locations, we recorded the countries from which the participants were recruited (if applicable). If an article did not describe recruiting participants, then the countries of the authors were recorded based on the authors’ affiliations.

Article information

  • Year of first publication

Study characteristics

  • Country or countries in which the research was conducted
  • Research study type

Contexts for women’s connected health

  • Health areas of focus

Digital device details

  • Types of digital health
  • Metrics collected by the devices

Usability and acceptability

  • Facilitators of and barriers to the use of the technologies (coded into themes)

For the thematic analysis, articles that mentioned any aspect of usability, acceptability, facilitators, or barriers to the use of digital health tools were imported into NVivo (R1 2020; QSR International). Coding was done independently by 2 reviewers (JLK and RW) and then combined through discussions. As with the data charting process, we initially coded more granularly and then grouped the detailed codes together later in the analytic process. Decisions on how to group the codes into themes and subthemes were made through group consensus (JLK, RW, and AT).

In our protocol, we indicated that we would extract the name of the device or app used in each study. While we did complete this step in our data charting, we have not presented the results in this paper. Several articles either did not specify the brand name (eg, only specified that it was a mobile app) or had digital health tools named after the study, so we did not find this information useful to showcase in our results. There were no other deviations from the published protocol.

The searches identified 14,629 records that were imported into the Covidence software for deduplication and screening. After deduplication, a total of 9102 articles were screened for relevance, and 8545 (93.88%) were excluded based on title and abstract. From reading the full texts of the remaining 557 records, an additional 151 (27.1%) were excluded. The most common reasons for exclusion were the inability of study participants to enter or track their own data (58/151, 38.4%) or because the digital health technology was designed to be used by or with a health care provider (48/151, 31.8%). The remaining 406 publications were included in the scoping review. Some of the included publications reported on the same research project; in those cases, all of them were included. Our search did not encounter any articles that directly addressed or mentioned the inclusion of intersex, transgender, or nonbinary participants. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram detailing the full study selection process is shown in Figure 1 . The list of included articles sorted by health areas of focus can be found in Multimedia Appendix 3 [ 18 - 58 ].

youngest person to publish research paper

Year and Country

There was an increasing trend in number of publications per year, with 10.1% (41/406) of the articles published in 2015, a total of 13.3% (54/406) of the articles published in 2016, a total of 18% (73/406) of the articles published in 2017, a total of 26.4% (107/406) of the articles published in 2018, and 29.6% (120/406) of the articles published in 2019. Only 2.7% (11/406) of the publications were from 2020 because our cutoff date for inclusion was February 29, 2020.

Articles included in the review covered worldwide research, including every continent except Antarctica ( Figure 2 ). As we only considered articles written in English, most of the articles were published in Western, English-speaking countries, primarily the United States (169/406, 41.6% of the articles), the United Kingdom (34/406, 8.4% of the articles), Australia (33/406, 8.1% of the articles), and Canada (19/406, 4.7% of the articles). Other countries where several included articles were published were China (13/406, 3.2% of the articles), the Netherlands (13/406, 3.2% of the articles), Spain (13/406, 3.2% of the articles), and Sweden (10/406, 2.5% of the articles).

Interestingly, of the 169 articles from the United States, 26 (15.4%) specifically focused on African American or Black, ethnic minority, or low-income women. One study from Singapore specifically included multiethnic women [ 18 ], and a study from Australia included Indigenous Australian women as their participants [ 19 ]. In addition, one review conducted by researchers in Australia looked specifically at studies with women from culturally and linguistically diverse backgrounds [ 20 ].

youngest person to publish research paper

Study Types

The types of studies that used digital health tools in women’s health research are reported in Figure 3 by year of publication (note that the articles could fall into more than one study category). The most common study type encountered was feasibility or acceptability studies (197/406, 48.5% of the articles, including 9/197, 4.6% protocols), followed by effectiveness studies (146/406, 36% of the articles, including 36/146, 24.7% protocols) and publications reporting on digital tool prototypes (73/406, 18% of the articles). Effectiveness studies reported on outcome measures of an intervention, including randomized and nonrandomized trials with one or more study arms. Reviews (of published literature, apps, or wearables), viewpoints, manuals, case studies, or analytical methods (56/406, 13.8% of the articles combined) were also encountered. Observational or correlative studies (44/406, 10.8% of the articles, including 3/44, 7% protocols) were studies that observed the health behaviors of individuals through digital health technologies without assessing the effectiveness of an intervention or analyzed associations between variables (eg, associations between heart rate and loss-of-control eating) [ 21 ]. Finally, measurement studies (23/406, 5.7% of the articles) reported on the validity, reliability, or accuracy of a digital health tool.

youngest person to publish research paper

Health Areas of Focus

The analysis of the reviewed articles highlighted research in several recurring women’s health areas of focus. A full breakdown of the health areas is reported in Table 1 (articles could fall into more than one health area). Pregnancy and the postpartum period emerged as the most prominent health area with 42.6% (173/406) of the articles. Within this category, there was a specific emphasis on general care and monitoring (45/173, 26% of the articles), physical activity and diet (34/173, 19.7% of the articles), and glucose monitoring (31/173, 17.9% of the articles). Cancer was identified as the second most common health area, with 19.5% (79/406) of the articles dedicated to its exploration. Specifically, a significant focus was observed on the relationship between cancer and cardiovascular health, with 47% (37/79) of the articles addressing this aspect. The impact of lifestyle on overall health and well-being was also addressed, with 14.3% (58/406) of the articles delving into physical activity, sedentary behavior, diet, weight, and obesity. Menstrual, sexual, and reproductive health were explored in 12.1% (49/406) of the articles to shed light on various aspects of women’s reproductive health and associated concerns, with 76% (37/49) focusing on menstrual cycle tracking or fertility monitoring. Furthermore, 9.9% (40/406) of the articles were dedicated to chronic conditions (such as urinary incontinence, osteoporosis, and diabetes) with the aim of enhancing understanding and developing interventions for individuals living with chronic health conditions. To accommodate articles that did not fit within the primary health areas, an Other category comprising 6.4% (26/406) of the articles was established. This category included articles on athlete monitoring (10/26, 38% of the articles), such as heart rate monitoring during sports tournaments; mental health and quality of life (9/26, 35% of the articles); gender-based violence (3/26, 12% of the articles); and more. Finally, a small subset of 0.5% (2/406) of the articles did not align with any specific health area; these included a publication reporting results from a survey on African American women’s willingness to participate in eHealth research [ 22 ] and a publication analyzing women’s interactions with digital health technologies [ 23 ]. These articles were included because, although they did not discuss a specific health area, they still focused on women’s use of digital health tools in general.

a PCOS: polycystic ovary syndrome.

b CVD: cardiovascular disease.

c COPD: chronic obstructive pulmonary disease.

d SLE: systemic lupus erythematosus.

e IC: interstitial cystitis.

f BPS: bladder pain syndrome.

g ABL: accidental bowel leakage.

Figure 4 shows how the health areas of focus for women’s use of digital health changed over the years that were included in the review (2015-2019 plus January 2020-February 2020). There was an increasing trend from 2015 to 2020 in the number of publications focusing on pregnancy and the postpartum period, as well as cancer and menstrual, sexual, and reproductive health. However, articles focused on women’s use of digital health for lifestyle-related topics and chronic conditions did not see a notable increase over those years.

youngest person to publish research paper

Type of Digital Health and Metrics Collected

Within the articles reviewed, smartphone, mobile, or tablet apps emerged as the most prevalent type of digital health (295/406, 72.7% of the articles), followed by wearable devices (165/406, 40.6% of the articles) and websites or patient portals (93/406, 22.9% of the articles). Other types of technology were not investigated as much. For example, 13.5% (55/406) of the articles addressed smart devices or the Internet of Things (referring to objects with sensors that connect to a network, such as Bluetooth-enabled glucometers and blood pressure machines). Finally, 7.4% (30/406) of the articles reported on 2-way messaging, 1% (4/406) of the articles reported on interactive voice response telephone calls, and only 0.5% (2/406) of the articles reported on implantable devices. With respect to the metrics collected, we found >250 metrics, such as heart rate, number of steps, mood, ovulation test results, and days of menstruation. A full list of the metrics is reported in Multimedia Appendix 4 .

Thematic Analysis

Of the 406 articles included in this scoping review, 168 (41.4%) mentioned usability, acceptability, facilitators, or barriers to the use of digital health tools at least once. Our thematic analysis identified 6 themes: (1) accessibility and connectivity, (2) design and functionality, (3) accuracy and credibility, (4) audience and adoption, (5) impact on community and health service, and (6) impact on health and behavior. The themes are described in further detail in the following sections.

The thematic analysis detailed in the following sections is primarily based on the views of the participants in the studies we reviewed to provide a user perspective; however, one subsection in theme 5 focuses on the health care provider perspective.

Theme 1: Accessibility and Connectivity

The accessibility and connectivity of digital technologies emerged as an important theme with two subthemes: (1) cost and convenience and (2) connectivity, compatibility, and software issues.

Cost and Convenience

Our analysis revealed that the cost and convenience of digital tools collecting PGHD are important factors that can impact their adoption and use. On the one hand, digital health technologies can be seen as more affordable compared to traditional health care visits and more accessible to a wider range of people, including those of a lower socioeconomic status. On the other hand, they can also be perceived as too expensive and novelty items, and associated extra costs such as data plans can also be a barrier for some people. Because PGHD can be collected and entered throughout the day in real time, and because most people carry a phone around with them every day, these technologies offer greater convenience than traditional in-person health care encounters by providing anytime, anywhere virtual access and putting information at people’s fingertips through smartphones and web platforms. One user spoke about an in-app treatment program:

That was what was so good about this, I can do this at home myself, no need to book an appointment, find the time and suit others, and you know, that process of booking a time. [ 24 ]

Some inconvenient aspects of digital health technologies include uncomfortable wearables that are too bulky, difficulty of use, or not fitting into the users’ lifestyles, as noted in one article:

Women also mentioned that the comfort of the wearable sensors was a barrier. Comfort became a barrier for some women during exercise and hot weather. [ 25 ]

Devices with a short battery life and wearables that are not water resistant are also considered inconvenient as they require the user to frequently remember to charge the device or put the wearable back on after water-based activities. Certain restrictions, such as not being able to wear a device in a workplace, can also create inconvenient barriers for some users.

Connectivity, Compatibility, and Software Issues

Factors related to connectivity and other issues such as device synchronization, freezing, or disconnection can significantly impact the user experience and engagement with digital health tools. For example, the dependence on mobile and internet access can be a disadvantage. Cellphone and network coverage limitations can pose an important barrier in rural areas or during travel. Where mobile data or Wi-Fi connection are limited, people may struggle to use digital health tools that require internet connection; this can create disparities in access to health care resources, particularly for those of a lower socioeconomic status or living in remote communities with limited infrastructure. Incompatibility between operating systems such as Android and iOS, iPhone and iPad, or various browsers can also be an important barrier to accessing digital health technology.

Software issues can significantly impact the user experience of digital health technologies. Broken links can prevent users from accessing valuable information or features within apps or websites. App crashes can discourage users from engaging with the digital health tool altogether. In addition, slow loading times can negatively impact the user experience, making it challenging for users to access information or features quickly and efficiently.

Theme 2: Design and Functionality

The second theme centered on design and functionality and included four subthemes: (1) appearance and design; (2) functionality and features; (3) personalization; and (4) safety, privacy, and security.

Appearance and Design

Appearance and design play important roles in the success of connected health devices. In terms of app design, the color scheme and layout facilitate user-friendliness. Bad formatting can make it difficult for users to read or understand the content of an app or website. Font size that is too small can be challenging for those with visual impairments, and some color combinations can be difficult to read. The quality of the images used in digital health interventions can also impact user experience, with low-quality images potentially making it difficult for users to interpret the information being presented.

Apps that are visually appealing and easy to use are more likely to be successful. When it comes to wearables, women tend to prefer sleek, understated designs that are esthetically pleasing without being bulky. A sleek design can encourage use of the wearable. For example, some women consider their wearable to be a fashion item that sparks conversation, which encourages their continued use of the device, as illustrated in a participant quote:

Um, that it’s, like, kind of stylish, like, I feel, like, cool that I wear one. A lot of people ask me, they’re like, oh, which one is that, like, is that a Fitbit, is that an Apple watch? It has the interchangeable bands and stuff like that, so, you can, like, change the color of it and everything. It’s like a conversation piece. [ 26 ]

Other women prefer more discretion in the design of wearables and their size or in the app icon on their mobile device because they do not want to reveal the purpose of the device to others. People may feel self-conscious when wearing the device or using the app, especially if it reveals their medical condition. For example, the following quote is from a study that incorporated a sensor band worn on the wrist to help female undergraduate students with problematic drinking:

P310 noted that while in class, “my professor commented on it which made me feel awkward.” [ 27 ]

Functionality and Features

In terms of functionality, the availability of clinical interpretation of user data is deemed essential, and health warnings based on recorded PGHD are noted to be helpful. Moreover, notifications and reminders are also useful for improving adherence to self-tracking and maintaining goals, and users appreciate receiving automated SMS text messages and feedback on progress. Actionable advice is seen as very important, and women expressed a desire for more interaction and the ability to integrate with other apps. For example, users want the ability to access information from their health record and to be able to see graphical summaries of their data over time. Regarding the presentation of information, users appreciate concise information written in simple language. Choice of words is also perceived as especially important to ensure that the information is easy to understand. People enjoy the gamification of content, and the graphical presentation of results is found to be informative.

The ability to upload multimedia and the ability to customize the application’s displays and notifications are noted as features that improve user engagement and satisfaction. The ability to record voice notes and consultations within apps is noted as a desirable feature, as well as having the option to book appointments directly through apps. Women also want the option to sync their desktop or phone calendar with apps to remind them of medical appointments and prescription requests, as some researchers noted:

Women could see the potential usefulness of being reminded to order their next prescription through the electronic alerts system. They found managing the monthly prescription requests challenging long-term and found setting up the reminder easy with the alert popping up on their phone or tablet. [ 28 ]
The application also allows women to set appointment reminders to ensure she is not missing her appointments and developing gaps in her care [...] “It allows me to remain organized for my visits to my OB with concerns, questions, symptoms I have experienced since my last visit.” [ 29 ]

Issues that negatively impact user engagement and outcomes are the inability to edit information or unsubscribe from notifications, which are sometimes thought to be either inconvenient or intrusive, as well as the presence of advertisements within the app. Ease of use is essential as apps or websites that are difficult to navigate can discourage users from engaging with them. For example, a study including the use of a mobile phone app reported the following:

A hindrance and disliked aspect was the difficulty in navigating through the app (eg, no back button, clunkiness, and the inability of participants to edit their inputted daily goals) as well as a lack of color and visuals within the app, giving it a clinical appearance. [ 30 ]

Some women are not comfortable answering questions that they consider intrusive, such as those related to sexual health. They rely on applications to provide trusted information about their condition and want suggestions for additional resources such as website links and local information.

Personalization

Women generally expressed a desire for greater personalization across several features within digital health tools. Messages and notifications that are personalized to the user’s health and self-tracking history and goals are more motivational and less likely to be ignored or perceived as irritating. Even factors such as using a first name in messages from the app make women feel like the messages are more personal and supportive.

Users have individual preferences when it comes to the frequency and timing of notifications, and it is important for digital health apps to allow for the customization of these settings as they can greatly impact user engagement and adherence. Moreover, users expressed a desire for the ability to customize their goals and the metrics they tracked. For example, they may want to change their goals in an app when their life circumstances change (eg, moving, starting a new job, becoming pregnant, or sustaining an injury). The ability to customize the dashboard of an app or website according to the user’s goals was also expressed as a desired feature. The ability to make these customizations will improve their adherence in the long run as their goals evolve.

When it comes to wearables, their placement on the body influences users’ preference and adherence to their use. For example, some women may prefer a wrist-worn device, whereas others may prefer a chest strap, a ring, or a device worn on the waist or ankle. The type of activity being monitored may also influence placement preference. A wrist-worn device may be more appropriate for monitoring steps, whereas a chest strap may be better suited for monitoring heart rate during exercise. Furthermore, placement preference may also be influenced by factors such as comfort, convenience, and visibility. A user may prefer a wrist-worn device because it is more visible and easier to access, whereas another user may prefer a device worn on the waist because it is less obtrusive and more comfortable during exercise or sleep. For instance, one study found the following:

Eight of the participants (40%) reported at some point of the long study period that the smart wristbands were uncomfortable to wear, especially at night. The wristbands irritated the skin, possibly due to pregnancy-related swelling. [ 31 ]

Finally, users have different preferences for how they want information to be presented in an app or website. Some people prefer to read content that is written out with citations and links to external websites. Others enjoy learning content from videos or audio recordings. When looking at their trends and progress, some users like to look at detailed graphs showing their daily progress, whereas others prefer to look at the data occasionally and only receive high-level information. The challenges concerning personalization were articulated by several authors:

It’s a difficult one. Some women want the full picture to fully understand what they are taking. Others want a black and white sketch, but not the details. They just want to know enough. Others do not want to see the picture, they just want to get on with it without knowing too much. Catering for all is a challenge. [ 28 ]

Safety, Privacy, and Security

Women are sometimes concerned about the physical safety of certain devices. For example, some mothers worried about their wearable wristbands scratching their babies [ 31 ]. Others worried about the effects of wearable devices on their skin, as expressed by a participant:

It’s weird because it does have a little laser thing on it, and I wonder if that’s, like, harming my skin (laughing). Like, I’ll sleep in it, and when I wake up I’ll have a red spot on my arm, it’s itchy sometime or sensitive, and I think it’s because of the laser thing, but I don’t really know. [ 26 ]

Some women are concerned about the privacy and security of digital health technologies and expect appropriate safeguards to be implemented in the tools they use. However, privacy and data security are not a concern for all women:

As I said, I’m very critical about patient data in general, especially in terms of data security...If you have a free app, it really depends on what happens to the private data. As a matter of fact, usually the information is stored on the app itself, and so other apps might gain access to the data easily. [ 32 ]
The survey revealed a low level of concern about issues relating to privacy or security of personal data. This suggests that privacy concerns were secondary to the benefits offered by uploading personal details into apps to provide the type of customisation they seek. [ 33 ]

Researchers also shared that some users perceived there to be more privacy when using an app as compared to traditional ways of communicating:

Some participants perceived the storage of their glucose levels on the smartphone as more secure than their current registration in a booklet. [ 34 ]
Women, particularly those who worked outside of the home, also commented that they appreciated the added convenience and privacy of this [text-based] communication method over phone-based communication. [ 34 ]

Theme 3: Accuracy and Credibility

In theme 3, we identified accuracy and credibility as important factors for acceptability considerations in digital health technologies.

The accuracy of digital health can impact user trust and adoption. Digital health tools enable users to keep track of their health, symptoms, and behaviors over time without relying on memory recall, which can be inaccurate or incomplete. Many studies reported that digital tracking can lead to more accurate data collection compared to paper-based methods. For example, at-home measurements of blood pressure and other vital signs have been found to be more accurate than those taken in a hospital or clinic setting. In some cases, apps are even able to accurately predict users’ menstrual cycles and mood changes. In addition, food diaries and activity trackers are often found to be more accurate when tracked within the app compared to using traditional paper-based methods. As the following participant conveyed, digital health may also make it easier for patients to tell the truth about their habits or health concerns:

I like this principle because...I know exactly, that via tablet one would admit things you wouldn’t necessarily tell the doctor or nurse. So, for starters, you can state it in the application. Of course, a conversation shouldn’t be missed afterwards, but this might make it easier for you to overcome yourself. [ 32 ]

However, accuracy can still be an issue in digital health. Different devices can produce different measurements, and some devices may miscount steps, the intensity of workouts, or the quantity and quality of sleep. For example, some women reported devices not tracking their steps while pushing a grocery cart or stroller, whereas others found that their steps were overcounted due to arm movements while they were seated. In addition, some users reported that food tracking options in apps were limited and did not include foods from their culture. Therefore, users may perceive digital health tools as not being representative of their true activity, which may lead them to discontinue the use of the devices. The following participant quote refers to a wrist-worn activity tracker:

Out paddling and we’re huffing and puffing and barely breathing and this isn’t even triggering anything. So it shows [...] that our 150 minute goal is like 60 or half of that. But we’ve actually put in the effort and then you just give up after a while. Like there’s no way I can make this. [ 35 ]

Women often prefer evidence-based health information (eg, explanations of conditions and symptoms and health advice) from a trustworthy source, such as an app curated from up-to-date and evidence-based research, over general internet searches. Users reported that the information provided in some apps was incomplete or inaccurate, with gaps in content or contradictory information that diminished their trustworthiness. In such cases, users may still prefer to talk to a health professional for more trustworthy information. Some women may also find it challenging to trust information that does not disclose sources as they are unsure of its reliability. Devices that are endorsed by, cite, and link to trustworthy health sources are more appealing to users. When sharing results from a web-based survey, the authors of one study reported the following:

Some respondents were specific about from where such advice should come, stating that they wanted expert, credible and up-to-date advice while others noted that they would like to see more Australian-specific or locally-based information in apps or apps that were not linked to the manufacturers of pregnancy or baby products. [ 33 ]

Theme 4: Audience and Adoption

Our fourth theme concerns audience and adoption, which includes two subthemes: (1) demographics and inclusivity and (2) timing and circumstances.

Demographics and Inclusivity

One of the challenges with digital health is to avoid one-size-fits-all interventions and to strive to tailor interventions to address the specific needs of different populations. Digital health that targets specific demographic groups or specific health conditions may increase the adoption of digital tools in those populations. That said, even when targeting people with specific health conditions as the audience, attention must be paid to the language and content in apps and websites. Some researchers noted that women did not want to participate or continue in their study because they did not want to constantly be confronted with their disease. Too much of a focus on disease and ill health can deter women from engaging with the tools, as commented on by some authors:

All but one participant preferred text content that focused on health and physical activity rather than content explicit to cancer. [ 36 ]
The women emphasized that less attention should be paid to chronic disease management and medication as the only treatment option. [...] it was important to explain the implications of the result of the scan and the risk of fractures in a way that will not place the women in a sickness role unnecessarily. [...] The knowledge base of osteoporosis should focus on osteoporosis as a common condition instead of a chronic bone disease. [ 37 ]

Younger women are often more familiar with and more comfortable using digital technology and, therefore, are more likely to use and adhere to a digital health protocol. Users with low technology skills want more training on how to use the digital health tools properly. Little provision is made for those for whom English is not their primary language, which can limit the accessibility and usefulness of digital health interventions. Factors such as language barriers, cultural beliefs, or lack of access to technology may lead to less adoption by some people belonging to ethnic minority groups. The relevance and usefulness of digital health may also vary based on geographic location.

Digital health tools are negatively perceived by some users if not designed to be inclusive of attributes such as body type or gender. For example, users prefer applications that use pictures or models that represent a diverse range of body sizes. Digital health technologies may not be gender inclusive and can conflate sex and gender. It is important to consider the unique health needs and experiences of individuals across the gender spectrum, as several researchers reported:

Participants commented on an exercise demonstration video and recommended that the model should have an “everyday-look” (e.g. plain clothes, jewellery). Also a choice of models of different ages to engage a wider range of patients and help them to relate or identify with the model was proposed. [ 38 ]
[Participant quote]: Maybe the body image it presents...like on a lot of apps, the people doing it looked like they were athletes already. And maybe they should have more people that look normal. [ 39 ]
Two women commented on the gendered design of most FTAs. FTA092 commented that “I chose Clue because it’s the only app that wasn’t pink.” FTA051 also found the gendered design of her previous app insulting; “my last app had a pink flower and was called MyDays or something ...I felt like they were trying to lure me in with this kind of ‘women’s’ approach” (FTA051). She subsequently stopped using that app and downloaded Clue. [ 40 ]

Timing and Circumstances

Individuals are more motivated to use digital health tools during times of illness or when they have a specific health goal in mind. The introduction of technology at the appropriate time impacts the utility and effectiveness of digital health interventions, especially when they are integrated into existing health care systems and routines. Digital health apps need to account for existing medical conditions or medical history to ensure accurate and complete information. For example, technologies that do not provide an option to indicate current pregnancy are perceived as frustrating to users as the in-app goals or notifications can be irrelevant and inconsiderate of their current limitations. In a focus group, one mother shared the following:

I get frustrated with the Garmin [smartwatch] because I wear my watch during the night so it tracks my sleeping as well. Then it gives you like an insight—so a little note will pop up and you know whether your sleep has been really regular or you’ve had irregular sleep. I wish that there was a thing that during pregnancy where that I could put in and say I’m pregnant, because I got those notes that your sleep is really irregular, and I was like, “Because I’m pregnant!” [ 23 ]

Users who are not experiencing symptoms or who perceive their health to be good are less likely to adopt digital health tools as they may not perceive any benefit from using them. Moreover, those who are already tracking their health using other methods (eg, paper-based tracking) are less interested in trying a new digital health tool. Similarly, regarding wearables, some people may already have a wearable and be less interested in having an additional wearable device.

Theme 5: Impact on Community and Health Service

This theme considers the impact of PGHD on community and health service, with three subthemes: (1) communication and community support, (2) clinical integration, and (3) health care provider perspective.

Communication and Community Support

One of the many perceived benefits by users of digital health interventions is the sense of community that these platforms enable. Even though some women reported feeling uncomfortable sharing personal information with strangers in a virtual group, most found that the ability to connect with others who shared similar experiences provided a sense of belonging and support that was motivating and reassuring, as shared by one woman:

What I did love about the apps is the forums. So if you have a weird pain or, you know, you have cramp in your legs at three a.m., you can get on your phone straight away, and you can get support by the women who are going through the same thing. [ 41 ]

Discussion forums and social media platforms associated with digital health interventions are perceived as helpful for connecting with others, sharing personal stories, and receiving support. Digital health interventions can also help women elicit support from friends and family to stay motivated and achieve health goals. For example, researchers who reported on women’s experiences of an app for stress urinary incontinence shared that some participants found it easier to talk to friends about an app for pelvic floor muscle training rather than talk about incontinence [ 24 ]. This can enable increased accountability and further encourage adherence to the intervention. One woman spoke about how her family supported her engagement with a digital health intervention for physical activity maintenance among female cancer survivors:

My husband’s a good motivator. When I say I’m going for a walk, he’ll go with me...with my sister-in-law and her kids, it’s they want to go with me; so it’s how many steps have you got today? Or, are we going to go for a walk. That kind of thing. And with my husband and my daughter it’s, “how many steps did you get today, did you do your workout, let us get it going.” [ 36 ]

In addition to support from family, friends, and community members, these digital platforms can provide an alternative to speaking with a health care provider in person. Asynchronous communication with health care providers is helpful especially for those who may not have easy access to in-person visits or for those who are uncomfortable discussing sensitive information face-to-face. Records of PGHD can also improve the ability to gather and share details with health care providers about symptoms that are difficult to remember during an in-person visit.

Clinical Integration

Women are more willing to participate in digital health interventions if they perceive that they have a direct impact on their clinical care. They appreciate the idea that their health is being monitored and that someone is keeping an eye on their data. Furthermore, women want to see more integration of their clinical test results within their digital health apps and websites. This increases their motivation to adhere to the interventions prescribed through the digital health application.

It was noted that physicians and other health care providers play a crucial role in promoting the use of digital health interventions among patients. As noted in the following participant quote, women enjoy being able to communicate with a health care provider through digital health:

I like it because you can tell the doctor what’s going on and submit it to your doctor, that is the main reason I like it because you can talk directly to your doctor and tell them what is going on without going in or calling. [ 42 ]

Women are more likely to adopt and use technology if it is recommended by their health care providers, family members, or friends. Women reported that digital health interventions were more effective when they were supported by a health care team. For example, having access to a health coach or counselor or receiving feedback from a health care provider on their progress increases their motivation to adhere to the interventions. This support also provides reassurance that they are on the right track toward achieving their health goals. However, some patients become frustrated when they receive conflicting advice from the digital health tool and their health care provider.

Health Care Provider Perspective

Some articles included thoughts from health care providers on digital health tools collecting PGHD [ 20 , 37 , 43 - 55 ]. From the health care provider perspective, digital health can offer several benefits, including the ability to monitor patients’ adherence to treatment and interventions. This can be particularly helpful for patients with chronic conditions that require ongoing management. Providers can use digital health tools to track patients’ progress and identify any potential issues that may require further attention, which can lead to improved clinical outcomes and reduce unnecessary consultations. For instance, one provider learned about their patient’s anxiousness through a mobile health intervention:

I didn’t know my patient was feeling anxious...But when she wrote it down, we could talk about it... [ 43 ]

Some health care providers expressed that digital health tracking could give them a more accurate picture of their patients’ activities and adherence to treatments. In a study about perspectives on a sensor attached to pills that can send data such as date and time of ingestion, a provider commented the following:

A positive would be data and getting a better grip on compliance. (...) I’m making sure the patient is adhering - assuming that the patient is taking everything inside of that blister, you can have confirmation of that. [ 44 ]

In addition, digital health can improve the efficiency of care delivery by providing education and resources directly to patients. This can help patients better understand their condition, treatment options, and self-management strategies, which can lead to better health outcomes.

However, it was also noted that digital health interventions should not replace in-person visits but rather complement them. Some health care providers are concerned about overreliance on digital health tools as well as the potential for misinterpretation of the data they provide. There may be a lack of feedback on the correct use of interventions, such as interpretations of medical advice provided, and health care providers have raised concerns about the safety and trustworthiness of the medical advice generated by the digital health tools. Health care providers especially worry about medico-legal effects of having information from digital health tools taken out of context or without considering the full picture of the user’s history and health, as demonstrated in the following quotes:

As a health care professional, I’m just mindful that if there was a video of me up there talking, if that was taken out of context or shared with another person where that information was not appropriate, that’s a concern to me. [ 45 ]
One anesthesiologist raised, “Who has access to the responses that I provide? Because if a patient receives information from me which they hold onto and is taken out of context, in a medical–legal situation, then that’s a big issue as well.” [ 46 ]

Providers may also find that the abundance of information generated by digital health tools can be overwhelming and time-consuming to manage, adding to an already hectic workflow and blurring professional boundaries. Large volumes of alerts and notifications from digital health tools can be disruptive to health care providers, who expressed the need to set boundaries regarding how and when they engaged with digital health tools. In a study reporting on perspectives about digital health from key informants (health care providers and researchers), one participant shared their thoughts on the potential for digital health to increase workload and liability:

Sometimes the more information that we provide for them (doctors), the more work and liability we give them, right? So if they get so much information that becomes actionable but they are overwhelmed, now they would be obligated to do something with this patient, they are in a chain of distribution, a chain of liability. [ 44 ]

Theme 6: Impact on Health and Behavior

Finally, our sixth theme describes the impact of PGHD on health and health behaviors.

Several studies reported that digital health interventions helped users stay motivated and, in turn, improved their health habits and behaviors, such as adherence to medication, physical activity, and healthy eating. The ability of users to look back at their data helps them identify patterns in their health and behaviors, which increases their awareness of their health and habits. The awareness then allows them to be more mindful of their habits and encourages self-reflection, thus promoting a deeper understanding of their health and well-being. The tracking of patterns in their health, combined with the educational component of some digital health tools, helps users come up with better self-management strategies and feel more confident in their ability to reach their health goals, giving them a greater sense of self-efficacy and control over their health. In a digital health intervention aimed at treating lymphedema following breast cancer treatment, a participant spoke of changes in her awareness of symptoms and improvements:

It helped me realize that I had excess fluid. My arms got lighter each time I did the exercises. My arms began to feel less heavy. It noticed it in my clothes as well. [ 56 ]

Digital health interventions are often reported to positively impact the mental health and well-being of individuals. Women reported improvements in their mood, emotional state, and coping abilities. They also reported a reduction in stress and anxiety levels, which can lead to improvements in overall health outcomes. The digital health tools provide users with a sense of support and accountability as well as feelings of accomplishment when meeting their goals.

However, it is important to note that, while digital health interventions can have many benefits, they may not be suitable for everyone and may even have negative effects on some individuals. For example, some users reported increased anxiety due to excessive monitoring or notifications, and others reported negative effects on their thoughts or worsening of symptoms related to health conditions. Some users found that self-tracking made them more attached to their phones, less likely to engage in social activities, and more isolated overall. Care should be taken to ensure that users do not become obsessive about self-tracking as this can be counterproductive or even harmful. Being hyperfocused on their symptoms or health condition could be distressing and even detrimental to their overall well-being. Therefore, it is important to carefully monitor the use of digital health interventions and adjust them as needed to ensure the best possible outcomes for each individual. One woman spoke about her overreliance on an app used to track breastfeeding:

I stopped using it because um I thought I’m being too anal about this...being too concerned about it, I just need to stress less, and just go with the flow and just be a bit more relaxed about it...so, that’s why I stopped using it completely, and then I think the breastfeeding improved from there ’cause I was worrying about it less. [ 57 ]

Table 2 provides a summary of the thematic analysis grouped into barriers and facilitators. It is worth noting that many things are both a barrier and a facilitator (eg, cost) depending on the individual. In addition, the presence of a specific feature may be a facilitator, whereas the absence of it may be a barrier.

Principal Findings

In this scoping review, we summarized information from 406 articles on digital technologies collecting PGHD and how they have been used in women’s health research. We found a steady increase in articles meeting our inclusion criteria from 2015 to 2020, indicating an increasing trend in the uptake and use of digital health tools in women’s health research before the COVID-19 pandemic. Most included studies (310/406, 76.4%) were feasibility or acceptability studies, effectiveness studies, or reports of digital tool prototypes. Most studies (299/406, 73.6%) focused on tracking conditions related to pregnancy or the postpartum period, cancer survivorship, or menstrual, sexual, and reproductive health. Several types of digital health were represented, with the most common being apps, wearable devices, and websites or patient portals. Through our thematic analysis, we found several considerations of facilitators of and barriers to using digital health tools, including the accessibility and convenience of the tools, visual appearance, device functionality and ability to personalize the user experience, and accuracy of the algorithms and information provided. It is also important to consider the target audience to optimize the adoption of the tools. Engagement with digital health tools may help users improve their health and health-related behaviors and gather support from friends, family, and other digital health users. Women are more likely to use digital health if it is recommended by a health care provider, but there are both benefits and challenges that health care providers may face if considering integrating digital health technology into clinical practice.

A previously published scoping review focused on information and communications technologies as a tool for women’s empowerment [ 59 ]. They reported that the concept of empowerment appeared in various ways with no clear consensus on the definition, with some studies mentioning terms such as self-concept, self-esteem, self-worth, and self-efficacy. Our thematic analysis also found that some women’s use of digital health tools increases their self-efficacy in managing their health. Another systematic review of 13 digital health interventions for midlife women found that many interventions did not use a specific behavior change theory [ 60 ]. Our scoping review did not examine the effectiveness of the interventions described, but those designing digital health tools and interventions may want to carefully consider behavioral theories in the design to increase adoption and retention rates and adherence to interventions.

Overall, digital health technology to collect PGHD has gained popularity over the past several years. The integration of wearables, smartphones, and digital health technologies has enabled the integration of passive data collection. This wealth of data provides valuable insights into various aspects of health, enabling informed decisions and the adoption of proactive measures to improve well-being. The uptake of this technology will usher in a new era in how we manage our health and well-being. This transformation has changed how we engage with our health and shifted our perception of health and the approach we take toward maintaining it.

Femtech, as a subset of digital health technology, has grown in popularity. This was evidenced by the large increase in the number of articles published between 2015 and 2020 that used digital health tools to track metrics during pregnancy and the postpartum period as well as metrics related to menstrual, sexual, and reproductive health. These technologies empower women and people assigned female at birth to take charge of their health. This is particularly relevant for people with conditions that are not diseases or health concerns per se but are nevertheless part of managing their overall health and well-being. In this way, femtech can provide a greater sense of control over reproductive health and choices, which can be precarious in many settings worldwide. However, in a previous scoping review, researchers reported that many mobile health apps do not follow data privacy, sharing, and security standards [ 61 ]. Issues related to the privacy and security of personal health data may be especially important when it comes to tracking reproductive health in settings where sexual and reproductive health rights are not guaranteed. This focus on pregnancy and reproductive health is consistent with the fact that women’s health research has largely focused on reproductive health topics [ 62 ]. Researchers and digital health developers must address gaps in women’s health regarding areas that are not strictly related to reproductive health. Women’s health encompasses much more than obstetrics and gynecology; even for health conditions that affect men and women, there may be sex or gender differences in disease presentation, personal experiences, and treatment plans. While using gendered language and design in femtech has the potential to reinforce stereotypes regarding femininity that could cause harm [ 63 ], there is a need for apps to provide content relevant to female populations while being gender inclusive and conscious of biases in the language and advice presented.

When analyzing themes related to acceptability, personalization emerged as a key aspect influencing the adoption and sustained use of digital health tools. People respond positively and want to engage with tools that cater to their unique needs and preferences. The ability to customize elements such as the frequency of notifications, specific health measures tracked and displayed, goal-setting options, and the amount of health information provided enhanced user engagement and motivation. However, offering too many personalization options might overwhelm users, making apps or devices cumbersome to use and navigate. Simplicity and ease of use should not be compromised in the pursuit of personalization. Creating personalized experiences that are intuitive and user-friendly while integrating multiple functionalities into a given device is an important consideration. Recognizing that a “one-size-fits-all” approach is inadequate, digital intervention designers need to define their target audience clearly. Apps that cater to specific groups, such as those with certain chronic health conditions, may inherently provide a sense of personalization by addressing their unique requirements. We have also learned the importance of ensuring that the design is inclusive and accessible to everyone within the target audience. Our findings that some tools are not sensitive to certain circumstances such as pregnancy are consistent with those of a systematic review of digital health interventions for postpartum women, in which the authors reported that barriers related to postpartum status could make it more difficult to engage with the interventions [ 58 ]. Tools designed with these circumstances in mind may be more engaging for women during pregnancy and the postpartum period, leading to greater adoption and quality of the technologies. Attrition can be high among users of digital health interventions [ 64 , 65 ], but most participants were willing to self-track when motivated by a specific health condition.

An important finding of this review was the growing demand and expectation that PGHD are integrated with clinical care. As digital health continues evolving, patients seek more seamless interactions between digital health data and health care providers. Moreover, services delivered through digital health technologies were not expected to replace the role of health care professionals but rather to be a useful tool to support health care management. Maintaining the human touch during communication for health care delivery was seen as important, with technology complementing clinical care to enhance the overall experience for patients and providers.

One of the critical considerations in clinical integration is the accuracy of PGHD collected from digital health tools. Ensuring the reliability and validity of the data is essential for effective clinical decision-making. Striking a balance between patient empowerment and health care provider oversight is crucial to achieving the best possible outcomes. In general, it is important for health care providers to actively propose digital health during patient visits and encourage its use. While challenges and concerns associated with the use of digital health are noted from health care providers’ perspective, such as concerns about medico-legal effects, maintaining professional boundaries, and not adding an abundance of work, the benefits of these tools in supporting patient care and improving outcomes are perceived as important.

Strengths, Limitations, and Future Directions

There are some limitations to this scoping review. Our inclusion criteria did not cover conference abstracts, conference reviews, editorials, letters, comments, or gray literature. Our review also did not include articles written in languages other than English. Therefore, there may be other uses of PGHD in women’s health that were not captured in this review. The assessments of the quality of included articles, the effectiveness of the interventions, or the accuracy in validating PGHD were outside this review’s scope and were not performed. Our aim was to provide a broad overview of PGHD in published women’s health research literature rather than evaluating the quality of the digital technologies or intervention effectiveness. Another limitation is the rapid growth of digital health and femtech, especially during the COVID-19 pandemic. It is important to note that this scoping review only captures the use of PGHD in women’s health before the emergence of the pandemic. We suggest that this review may provide a baseline for comparison in a future scoping review that captures articles published in March 2020 or later. The strengths of this review include the large number of publications analyzed and the data charting process conducted in duplicate by 2 reviewers. The broad scope of this review also helps provide an overall picture of digital health for women and highlights gaps in the research literature.

Future endeavors in this space should consider digital health tools for women for nonreproductive topics such as chronic health conditions that primarily affect women or conditions that have sex or gender differences in presentation and treatment. Within reproductive health, there was a large focus on pregnancy, but there is an unmet need for research and digital health tools appropriate for women in perimenopause and menopause. A previous literature review found <5 articles published between 2010 and 2020 about digital health technologies that meet the psychosocial needs of women experiencing menopause [ 66 ]. There may also be further opportunities for digital health tools geared toward specific racial or ethnic groups that are culturally sensitive and available in multiple languages. A systematic review found that barriers to the use of digital health among culturally and linguistically diverse populations include lower literacy levels and the use of complex medical terminology in some apps, lack of recognition of cultural concerns, stereotypes, and inaccurate portrayals of cultural groups [ 67 ]. Previous scoping reviews in the space of women’s digital health have identified the need for femtech to pay more attention to cultural appropriateness and consider cultural contexts in their design [ 68 , 69 ].

Conclusions

In conclusion, the integration of wearables, smartphones, and other forms of digital health has revolutionized how we approach and engage with our health. Personalization, inclusivity, and integration with clinical care are vital aspects of developing effective digital health solutions. By understanding the needs of the target audience, providing meaningful personalization, and ensuring data accuracy, digital health can truly transform health care and empower individuals to take charge of their well-being while maintaining a collaborative relationship with health care professionals.

Acknowledgments

Thank you to Shannon Cheng, reference librarian, for her work in developing the search strategy and conducting the database searches. A big thank you to Dr Beth Payne for reviewing the manuscript draft and providing helpful feedback. AT is funded by a Michael Smith Health Research British Columbia Scholar award.

Data Availability

The data sets generated during this study are available in the OSF repository [ 70 ].

Authors' Contributions

JLK and AT conceived the study and designed the study protocol. JLK, RST, and AT conducted the article screening. JLK, RW, and RST conducted the data charting. JLK, RST, and DSC created the visualizations and tables of the charted data. The thematic analysis coding was conducted by JLK and RW, with additional discussions with AT in refining the themes. JLK, RST, and AT wrote the draft of the manuscript. All authors reviewed the manuscript before submission.

Conflicts of Interest

None declared.

PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist.

Full search strategy.

List of included articles by health area.

Metrics collected in the included studies.

  • Conceptualizing a data infrastructure for the capture, use, and sharing of patient-generated health data in care delivery and research through 2024. The Office of the National Coordinator for Health Information Technology. Jan 2018. URL: https://www.healthit.gov/sites/default/files/onc_pghd_final_white_paper.pdf [accessed 2024-05-03]
  • DeSilva J, Prensky-Pomeranz R, Zweig M. Digital health consumer adoption report 2020. RockHealth. Feb 26, 2021. URL: https://rockhealth.com/insights/digital-health-consumer-adoption-report-2020 [accessed 2024-05-03]
  • Taylor P. Penetration of mobile devices in Canada as share of the population from 2009 to 2021. Statista. URL: https://www.statista.com/statistics/462386/mobile-device-penetration-canada [accessed 2024-05-03]
  • Olsen E. Digital health apps balloon to more than 350,000 available on the market, according to IQVIA report. MobiHealthNews. Aug 4, 2021. URL: https:/​/www.​mobihealthnews.com/​news/​digital-health-apps-balloon-more-350000-available-market-according-iqvia-report [accessed 2024-05-03]
  • Paré G, Leaver C, Bourget C. Diffusion of the digital health self-tracking movement in Canada: results of a national survey. J Med Internet Res. May 02, 2018;20(5):e177. [ CrossRef ] [ Medline ]
  • Fox S, Duggan M. Tracking for health. Pew Research Center. Jan 28, 2013. URL: https:/​/www.​pewresearch.org/​internet/​wp-content/​uploads/​sites/​9/​media/​Files/​Reports/​2013/​PIP_TrackingforHealth-with-appendix.​pdf [accessed 2024-05-03]
  • Peek N, Sujan M, Scott P. Digital health and care in pandemic times: impact of COVID-19. BMJ Health Care Inform. Jun 2020;27(1):e100166. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Budd J, Miller BS, Manning EM, Lampos V, Zhuang M, Edelstein M, et al. Digital technologies in the public-health response to COVID-19. Nat Med. Aug 2020;26(8):1183-1192. [ CrossRef ] [ Medline ]
  • Bruining N. The post-pandemic legacy: the breakthrough of digital health and telemedicine. Cardiovasc Res. Jul 27, 2021;117(9):e118-e119. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Meskó B. COVID-19's impact on digital health adoption: the growing gap between a technological and a cultural transformation. JMIR Hum Factors. Sep 19, 2022;9(3):e38926. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kim KK, Jalil S, Ngo V. Improving self-management and care coordination with person-generated health data and mobile health. In: Edmunds M, Hass C, Holve E, editors. Consumer Informatics and Digital Health. Cham, Switzerland. Springer; Jan 18, 2019.
  • Shapiro M, Johnston D, Wald J, Mon D. Patient-generated health data. White paper. RTI International. 2012. URL: https://www.rti.org/publication/patient-generated-health-data-white-paper [accessed 2024-05-03]
  • Vodicka E, Kim K, Devine EB, Gnanasakthy A, Scoggins JF, Patrick DL. Inclusion of patient-reported outcome measures in registered clinical trials: evidence from ClinicalTrials.gov (2007-2013). Contemp Clin Trials. Jul 2015;43:1-9. [ CrossRef ] [ Medline ]
  • Femtech—time for a digital revolution in the women’s health market. Frost & Sullivan. Jan 31, 2018. URL: https://www.frost.com/frost-perspectives/femtechtime-digital-revolution-womens-health-market [accessed 2024-05-03]
  • Karim JL, Talhouk A. Person-generated health data in women's health: protocol for a scoping review. JMIR Res Protoc. May 28, 2021;10(5):e26110. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. Oct 02, 2018;169(7):467-473. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ahmadvand A, Kavanagh D, Clark M, Drennan J, Nissen L. Trends and visibility of "digital health" as a keyword in articles by JMIR publications in the new millennium: bibliographic-bibliometric analysis. J Med Internet Res. Dec 19, 2019;21(12):e10477. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lau Y, Cheng LJ, Chi C, Tsai C, Ong KW, Ho-Lim SS, et al. Development of a healthy lifestyle mobile app for overweight pregnant women: qualitative study. JMIR Mhealth Uhealth. Apr 23, 2018;6(4):e91. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Maxwell H, O’Shea M, Stronach M, Pearce S. Empowerment through digital health trackers: an exploration of Indigenous Australian women and physical activity in leisure settings. Ann Leis Res. Oct 04, 2019;24(1):150-167. [ CrossRef ]
  • Hughson JP, Daly JO, Woodward-Kron R, Hajek J, Story D. The rise of pregnancy apps and the implications for culturally and linguistically diverse women: narrative review. JMIR Mhealth Uhealth. Nov 16, 2018;6(11):e189. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ranzenhofer LM, Engel SG, Crosby RD, Haigney M, Anderson M, McCaffery JM, et al. Real-time assessment of heart rate variability and loss of control eating in adolescent girls: a pilot study. Int J Eat Disord. Feb 2016;49(2):197-201. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • James DC, Harville C2, Whitehead N, Stellefson M, Dodani S, Sears C. Willingness of African American women to participate in e-Health/m-Health research. Telemed J E Health. Mar 2016;22(3):191-197. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lupton D, Maslen S. The more-than-human sensorium: sensory engagements with digital self-tracking technologies. Senses Soc. Jul 25, 2018;13(2):190-202. [ CrossRef ]
  • Asklund I, Samuelsson E, Hamberg K, Umefjord G, Sjöström M. User experience of an app-based treatment for stress urinary incontinence: qualitative interview study. J Med Internet Res. Mar 14, 2019;21(3):e11296. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Huberty J, Ehlers DK, Kurka J, Ainsworth B, Buman M. Feasibility of three wearable sensors for 24 hour monitoring in middle-aged women. BMC Womens Health. Jul 30, 2015;15:55. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Haney AC. Young female college millennials' intent for behavior change with wearable fitness technology. Walden University. 2018. URL: https://scholarworks.waldenu.edu/dissertations/5197/ [accessed 2020-04-11]
  • Leonard NR, Silverman M, Sherpa DP, Naegle MA, Kim H, Coffman DL, et al. Mobile health technology using a wearable sensorband for female college students with problem drinking: an acceptability and feasibility study. JMIR Mhealth Uhealth. Jul 07, 2017;5(7):e90. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Brett J, Boulton M, Watson E. Development of an e-health app to support women prescribed adjuvant endocrine therapy after treatment for breast cancer. Patient Prefer Adherence. Dec 11, 2018;12:2639-2647. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chaudhry BM. Expecting great expectations when expecting. Mhealth. Jan 10, 2018;4:2. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Mann D, Riddell L, Lim K, Byrne LK, Nowson C, Rigo M, et al. Mobile phone app aimed at improving iron intake and bioavailability in premenopausal women: a qualitative evaluation. JMIR Mhealth Uhealth. Sep 28, 2015;3(3):e92. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Grym K, Niela-Vilén H, Ekholm E, Hamari L, Azimi I, Rahmani A, et al. Feasibility of smart wristbands for continuous monitoring during pregnancy and one month after birth. BMC Pregnancy Childbirth. Jan 17, 2019;19(1):34. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Goetz M, Müller M, Matthies LM, Hansen J, Doster A, Szabo A, et al. Perceptions of patient engagement applications during pregnancy: a qualitative assessment of the patient's perspective. JMIR Mhealth Uhealth. May 26, 2017;5(5):e73. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lupton D, Pedersen S. An Australian survey of women's use of pregnancy and parenting apps. Women Birth. Aug 2016;29(4):368-375. [ CrossRef ] [ Medline ]
  • de Mooij MJ, Hodny RL, O'Neil DA, Gardner MR, Beaver M, Brown AT, et al. OB nest: reimagining low-risk prenatal care. Mayo Clin Proc. Apr 2018;93(4):458-466. [ CrossRef ] [ Medline ]
  • Kokts-Porietis RL, Stone CR, Friedenreich CM, Froese A, McDonough M, McNeil J. Breast cancer survivors' perspectives on a home-based physical activity intervention utilizing wearable technology. Support Care Cancer. Aug 2019;27(8):2885-2892. [ CrossRef ] [ Medline ]
  • Gell NM, Tursi A, Grover KW, Dittus K. Female cancer survivor perspectives on remote intervention components to support physical activity maintenance. Support Care Cancer. May 2020;28(5):2185-2194. [ CrossRef ] [ Medline ]
  • Ravn Jakobsen P, Hermann AP, Søndergaard J, Wiil UK, Clemensen J. Development of an mHealth application for women newly diagnosed with osteoporosis without preceding fractures: a participatory design approach. Int J Environ Res Public Health. Feb 13, 2018;15(2):330. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Harder H, Holroyd P, Burkinshaw L, Watten P, Zammit C, Harris PR, et al. A user-centred approach to developing bWell, a mobile app for arm and shoulder exercises after breast cancer treatment. J Cancer Surviv. Dec 2017;11(6):732-742. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Depper A, Howe PD. Are we fit yet? English adolescent girls’ experiences of health and fitness apps. Health Sociol Rev. Jul 04, 2016;26(1):98-112. [ CrossRef ]
  • Gambier-Ross K, McLernon DJ, Morgan HM. A mixed methods exploratory study of women's relationships with and uses of fertility tracking apps. Digit Health. Jul 25, 2018;4:2055207618785077. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lupton D. ‘It just gives me a bit of peace of mind’: Australian women’s use of digital media for pregnancy and early motherhood. Societies. Sep 15, 2017;7(3):25. [ CrossRef ]
  • Logsdon MC, Lauf A, Stikes R, Revels A, Vickers-Smith R. Partnering with new mothers to develop a smart phone app to prevent maternal mortality after hospital discharge: a pilot study. J Adv Nurs. Jan 2020;76(1):324-327. [ CrossRef ] [ Medline ]
  • Wright AA, Raman N, Staples P, Schonholz S, Cronin A, Carlson K, et al. The HOPE pilot study: harnessing patient-reported outcomes and biometric data to enhance cancer care. JCO Clin Cancer Inform. Dec 2018;2:1-12. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • de Mendoza AH, Cabling ML, Dilawari A, Turner JW, Fernández N, Henderson A, et al. Providers' perspectives on adherence to hormonal therapy in breast cancer survivors. Is there a role for the digital health feedback system? Health Technol (Berl). Mar 2019;9(2):175-184. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Willcox JC, van der Pligt P, Ball K, Wilkinson SA, Lappas M, McCarthy EA, et al. Views of women and health professionals on mHealth lifestyle interventions in pregnancy: a qualitative investigation. JMIR Mhealth Uhealth. Oct 28, 2015;3(4):e99. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ke JX, George RB, Wozney L, Chorney JL. Patient-centred perioperative mobile application in Cesarean delivery: needs assessment and development. Can J Anaesth. Oct 2019;66(10):1194-1201. [ CrossRef ] [ Medline ]
  • Firet L, de Bree C, Verhoeks CM, Teunissen DA, Lagro-Janssen AL. Mixed feelings: general practitioners' attitudes towards eHealth for stress urinary incontinence - a qualitative study. BMC Fam Pract. Jan 26, 2019;20(1):21. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Garnweidner-Holme LM, Borgen I, Garitano I, Noll J, Lukasse M. Designing and developing a mobile smartphone application for women with gestational diabetes mellitus followed-up at diabetes outpatient clinics in Norway. Healthcare (Basel). May 21, 2015;3(2):310-323. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Grassl N, Nees J, Schramm K, Spratte J, Sohn C, Schott TC, et al. A web-based survey assessing the attitudes of health care professionals in Germany toward the use of telemedicine in pregnancy monitoring: cross-sectional study. JMIR Mhealth Uhealth. Aug 08, 2018;6(8):e10063. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Pais S, Parry D, Petrova K, Rowan J. Acceptance of using an ecosystem of mobile apps for use in diabetes clinic for self-management of gestational diabetes mellitus. Stud Health Technol Inform. 2017;245:188-192. [ Medline ]
  • Ragavan MI, Ferre V, Bair-Merritt M. Thrive: a novel health education mobile application for mothers who have experienced intimate partner violence. Health Promot Pract. Mar 2020;21(2):160-164. [ CrossRef ] [ Medline ]
  • Runkle J, Sugg M, Boase D, Galvin SL, C Coulson C. Use of wearable sensors for pregnancy health and environmental monitoring: descriptive findings from the perspective of patients and providers. Digit Health. Feb 06, 2019;5:2055207619828220. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Sadigursky A. Move my mood: development and evaluation of a mobile mental health self-help app using behavioral activation for women with postpartum depression. Alliant International University. 2018. URL: https://books.google.co.in/books/about/Move_My_Mood.html?id=dYtP0AEACAAJ&redir_esc=y [accessed 2020-03-30]
  • Scherr CL, Feuston JL, Nixon DM, Cohen SA. A two-phase approach to developing SNAP: an iPhone application to support appointment scheduling and management for women with a BRCA mutation. J Genet Couns. Apr 2018;27(2):439-445. [ CrossRef ] [ Medline ]
  • Tommasone G, Bazzani M, Solinas V, Serafini P. Midwifery e-health: from design to validation of “mammastyle — Gravidanza Fisiologica”. In: Proceedings of the IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom). 2016. Presented at: Healthcom 2016; September 14-16, 2016; Munich, Germany. [ CrossRef ]
  • Fu MR, Axelrod D, Guth AA, Wang Y, Scagliola J, Hiotis K, et al. Usability and feasibility of health IT interventions to enhance Self-Care for Lymphedema Symptom Management in breast cancer survivors. Internet Interv. Sep 2016;5:56-64. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Dienelt K, Moores CJ, Miller J, Mehta K. An investigation into the use of infant feeding tracker apps by breastfeeding mothers. Health Informatics J. Sep 2020;26(3):1672-1683. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lim S, Tan A, Madden S, Hill B. Health professionals' and postpartum women's perspectives on digital health interventions for lifestyle management in the postpartum period: a systematic review of qualitative studies. Front Endocrinol (Lausanne). Nov 8, 2019;10:767. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Mackey A, Petrucka P. Technology as the key to women's empowerment: a scoping review. BMC Womens Health. Feb 23, 2021;21(1):78. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Sediva H, Cartwright T, Robertson C, Deb SK. Behavior change techniques in digital health interventions for midlife women: systematic review. JMIR Mhealth Uhealth. Nov 09, 2022;10(11):e37234. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Alfawzan N, Christen M, Spitale G, Biller-Andorno N. Privacy, data sharing, and data security policies of women's mHealth apps: scoping review and content analysis. JMIR Mhealth Uhealth. May 06, 2022;10(5):e33735. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Hallam L, Vassallo A, Pinho-Gomes AC, Carcel C, Woodward M. Does journal content in the field of women's health represent women's burden of disease? A review of publications in 2010 and 2020. J Womens Health (Larchmt). May 2022;31(5):611-619. [ CrossRef ] [ Medline ]
  • Figueroa CA, Luo T, Aguilera A, Lyles CR. The need for feminist intersectionality in digital health. Lancet Digit Health. Aug 2021;3(8):e526-e533. [ CrossRef ]
  • Jabir AI, Lin X, Martinengo L, Sharp G, Theng YL, Tudor Car L. Attrition in conversational agent-delivered mental health interventions: systematic review and meta-analysis. J Med Internet Res. Feb 27, 2024;26:e48168. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Meyerowitz-Katz G, Ravi S, Arnolda L, Feng X, Maberly G, Astell-Burt T. Rates of attrition and dropout in app-based interventions for chronic disease: systematic review and meta-analysis. J Med Internet Res. Sep 29, 2020;22(9):e20283. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Cronin C, Hungerford C, Wilson RL. Using digital health technologies to manage the psychosocial symptoms of menopause in the workplace: a narrative literature review. Issues Ment Health Nurs. Jun 2021;42(6):541-548. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Whitehead L, Talevski J, Fatehi F, Beauchamp A. Barriers to and facilitators of digital health among culturally and linguistically diverse populations: qualitative systematic review. J Med Internet Res. Feb 28, 2023;25:e42719. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Birati Y, Yefet E, Perlitz Y, Shehadeh N, Spitzer S. Cultural and digital health literacy appropriateness of app- and web-based systems designed for pregnant women with gestational diabetes mellitus: scoping review. J Med Internet Res. Oct 14, 2022;24(10):e37844. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Woodley SJ, Moller B, Clark AR, Bussey MD, Sangelaji B, Perry M, et al. Digital technologies for women's pelvic floor muscle training to manage urinary incontinence across their life course: scoping review. JMIR Mhealth Uhealth. Jul 05, 2023;11:e44929. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Person-generated health data in women’s health: scoping review. OSF Home. Mar 7, 2024. URL: https://osf.io/3eync/ [accessed 2024-05-07]

Abbreviations

Edited by T de Azevedo Cardoso; submitted 04.10.23; peer-reviewed by D Liu, M Herron; comments to author 23.02.24; revised version received 15.03.24; accepted 26.03.24; published 16.05.24.

©Jalisa Lynn Karim, Rachel Wan, Rhea S Tabet, Derek S Chiu, Aline Talhouk. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 16.05.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

  • Open access
  • Published: 13 May 2024

What are the strengths and limitations to utilising creative methods in public and patient involvement in health and social care research? A qualitative systematic review

  • Olivia R. Phillips 1 , 2   na1 ,
  • Cerian Harries 2 , 3   na1 ,
  • Jo Leonardi-Bee 1 , 2 , 4   na1 ,
  • Holly Knight 1 , 2 ,
  • Lauren B. Sherar 2 , 3 ,
  • Veronica Varela-Mato 2 , 3 &
  • Joanne R. Morling 1 , 2 , 5  

Research Involvement and Engagement volume  10 , Article number:  48 ( 2024 ) Cite this article

103 Accesses

2 Altmetric

Metrics details

There is increasing interest in using patient and public involvement (PPI) in research to improve the quality of healthcare. Ordinarily, traditional methods have been used such as interviews or focus groups. However, these methods tend to engage a similar demographic of people. Thus, creative methods are being developed to involve patients for whom traditional methods are inaccessible or non-engaging.

To determine the strengths and limitations to using creative PPI methods in health and social care research.

Electronic searches were conducted over five databases on 14th April 2023 (Web of Science, PubMed, ASSIA, CINAHL, Cochrane Library). Studies that involved traditional, non-creative PPI methods were excluded. Creative PPI methods were used to engage with people as research advisors, rather than study participants. Only primary data published in English from 2009 were accepted. Title, abstract and full text screening was undertaken by two independent reviewers before inductive thematic analysis was used to generate themes.

Twelve papers met the inclusion criteria. The creative methods used included songs, poems, drawings, photograph elicitation, drama performance, visualisations, social media, photography, prototype development, cultural animation, card sorting and persona development. Analysis identified four limitations and five strengths to the creative approaches. Limitations included the time and resource intensive nature of creative PPI, the lack of generalisation to wider populations and ethical issues. External factors, such as the lack of infrastructure to support creative PPI, also affected their implementation. Strengths included the disruption of power hierarchies and the creation of a safe space for people to express mundane or “taboo” topics. Creative methods are also engaging, inclusive of people who struggle to participate in traditional PPI and can also be cost and time efficient.

‘Creative PPI’ is an umbrella term encapsulating many different methods of engagement and there are strengths and limitations to each. The choice of which should be determined by the aims and requirements of the research, as well as the characteristics of the PPI group and practical limitations. Creative PPI can be advantageous over more traditional methods, however a hybrid approach could be considered to reap the benefits of both. Creative PPI methods are not widely used; however, this could change over time as PPI becomes embedded even more into research.

Plain English Summary

It is important that patients and public are included in the research process from initial brainstorming, through design to delivery. This is known as public and patient involvement (PPI). Their input means that research closely aligns with their wants and needs. Traditionally to get this input, interviews and group discussions are held, but this can exclude people who find these activities non-engaging or inaccessible, for example those with language challenges, learning disabilities or memory issues. Creative methods of PPI can overcome this. This is a broad term describing different (non-traditional) ways of engaging patients and public in research, such as through the use or art, animation or performance. This review investigated the reasons why creative approaches to PPI could be difficult (limitations) or helpful (strengths) in health and social care research. After searching 5 online databases, 12 studies were included in the review. PPI groups included adults, children and people with language and memory impairments. Creative methods included songs, poems, drawings, the use of photos and drama, visualisations, Facebook, creating prototypes, personas and card sorting. Limitations included the time, cost and effort associated with creative methods, the lack of application to other populations, ethical issues and buy-in from the wider research community. Strengths included the feeling of equality between academics and the public, creation of a safe space for people to express themselves, inclusivity, and that creative PPI can be cost and time efficient. Overall, this review suggests that creative PPI is worthwhile, however each method has its own strengths and limitations and the choice of which will depend on the research project, PPI group characteristics and other practical limitations, such as time and financial constraints.

Peer Review reports

Introduction

Patient and public involvement (PPI) is the term used to describe the partnership between patients (including caregivers, potential patients, healthcare users etc.) or the public (a community member with no known interest in the topic) with researchers. It describes research that is done “‘with’ or ‘by’ the public, rather than ‘to,’ ‘about’ or ‘for’ them” [ 1 ]. In 2009, it became a legislative requirement for certain health and social care organisations to include patients, families, carers and communities in not only the planning of health and social care services, but the commissioning, delivery and evaluation of them too [ 2 ]. For example, funding applications for the National Institute of Health and Care Research (NIHR), a UK funding body, mandates a demonstration of how researchers plan to include patients/service users, the public and carers at each stage of the project [ 3 ]. However, this should not simply be a tokenistic, tick-box exercise. PPI should help formulate initial ideas and should be an instrumental, continuous part of the research process. Input from PPI can provide unique insights not yet considered and can ensure that research and health services are closely aligned to the needs and requirements of service users PPI also generally makes research more relevant with clearer outcomes and impacts [ 4 ]. Although this review refers to both patients and the public using the umbrella term ‘PPI’, it is important to acknowledge that these are two different groups with different motivations, needs and interests when it comes to health research and service delivery [ 5 ].

Despite continuing recognition of the need of PPI to improve quality of healthcare, researchers have also recognised that there is no ‘one size fits all’ method for involving patients [ 4 ]. Traditionally, PPI methods invite people to take part in interviews or focus groups to facilitate discussion, or surveys and questionnaires. However, these can sometimes be inaccessible or non-engaging for certain populations. For example, someone with communication difficulties may find it difficult to engage in focus groups or interviews. If individuals lack the appropriate skills to interact in these types of scenarios, they cannot take advantage of the participation opportunities it can provide [ 6 ]. Creative methods, however, aim to resolve these issues. These are a relatively new concept whereby researchers use creative methods (e.g., artwork, animations, Lego), to make PPI more accessible and engaging for those whose voices would otherwise go unheard. They ensure that all populations can engage in research, regardless of their background or skills. Seminal work has previously been conducted in this area, which brought to light the use of creative methodologies in research. Leavy (2008) [ 7 ] discussed how traditional interviews had limits on what could be expressed due to their sterile, jargon-filled and formulaic structure, read by only a few specialised academics. It was this that called for more creative approaches, which included narrative enquiry, fiction-based research, poetry, music, dance, art, theatre, film and visual art. These practices, which can be used in any stage of the research cycle, supported greater empathy, self-reflection and longer-lasting learning experiences compared to interviews [ 7 ]. They also pushed traditional academic boundaries, which made the research accessible not only to researchers, but the public too. Leavy explains that there are similarities between arts-based approaches and scientific approaches: both attempts to investigate what it means to be human through exploration, and used together, these complimentary approaches can progress our understanding of the human experience [ 7 ]. Further, it is important to acknowledge the parallels and nuances between creative and inclusive methods of PPI. Although creative methods aim to be inclusive (this should underlie any PPI activity, whether creative or not), they do not incorporate all types of accessible, inclusive methodologies e.g., using sign language for people with hearing impairments or audio recordings for people who cannot read. Given that there was not enough scope to include an evaluation of all possible inclusive methodologies, this review will focus on creative methods of PPI only.

We aimed to conduct a qualitative systematic review to highlight the strengths of creative PPI in health and social care research, as well as the limitations, which might act as a barrier to their implementation. A qualitative systematic review “brings together research on a topic, systematically searching for research evidence from primary qualitative studies and drawing the findings together” [ 8 ]. This review can then advise researchers of the best practices when designing PPI.

Public involvement

The PHIRST-LIGHT Public Advisory Group (PAG) consists of a team of experienced public contributors with a diverse range of characteristics from across the UK. The PAG was involved in the initial question setting and study design for this review.

Search strategy

For the purpose of this review, the JBI approach for conducting qualitative systematic reviews was followed [ 9 ]. The search terms were (“creativ*” OR “innovat*” OR “authentic” OR “original” OR “inclu*”) AND (“public and patient involvement” OR “patient and public involvement” OR “public and patient involvement and engagement” OR “patient and public involvement and engagement” OR “PPI” OR “PPIE” OR “co-produc*” OR “co-creat*” OR “co-design*” OR “cooperat*” OR “co-operat*”). This search string was modified according to the requirements of each database. Papers were filtered by title, abstract and keywords (see Additional file 1 for search strings). The databases searched included Web of Science (WoS), PubMed, ASSIA and CINAHL. The Cochrane Library was also searched to identify relevant reviews which could lead to the identification of primary research. The search was conducted on 14/04/23. As our aim was to report on the use of creative PPI in research, rather than more generic public engagement, we used electronic databases of scholarly peer-reviewed literature, which represent a wide range of recognised databases. These identified studies published in general international journals (WoS, PubMed), those in social sciences journals (ASSIA), those in nursing and allied health journals (CINAHL), and trials of interventions (Cochrane Library).

Inclusion criteria

Only full-text, English language, primary research papers from 2009 to 2023 were included. This was the chosen timeframe as in 2009 the Health and Social Reform Act made it mandatory for certain Health and Social Care organisations to involve the public and patients in planning, delivering, and evaluating services [ 2 ]. Only creative methods of PPI were accepted, rather than traditional methods, such as interviews or focus groups. For the purposes of this paper, creative PPI included creative art or arts-based approaches (e.g., e.g. stories, songs, drama, drawing, painting, poetry, photography) to enhance engagement. Titles were related to health and social care and the creative PPI was used to engage with people as research advisors, not as study participants. Meta-analyses, conference abstracts, book chapters, commentaries and reviews were excluded. There were no limits concerning study location or the demographic characteristics of the PPI groups. Only qualitative data were accepted.

Quality appraisal

Quality appraisal using the Critical Appraisal Skills Programme (CASP) checklist [ 10 ] was conducted by the primary authors (ORP and CH). This was done independently, and discrepancies were discussed and resolved. If a consensus could not be reached, a third independent reviewer was consulted (JRM). The full list of quality appraisal questions can be found in Additional file 2 .

Data extraction

ORP extracted the study characteristics and a subset of these were checked by CH. Discrepancies were discussed and amendments made. Extracted data included author, title, location, year of publication, year study was carried out, research question/aim, creative methods used, number of participants, mean age, gender, ethnicity of participants, setting, limitations and strengths of creative PPI and main findings.

Data analysis

The included studies were analysed using inductive thematic analysis [ 11 ], where themes were determined by the data. The familiarisation stage took place during full-text reading of the included articles. Anything identified as a strength or limitation to creative PPI methods was extracted verbatim as an initial code and inputted into the data extraction Excel sheet. Similar codes were sorted into broader themes, either under ‘strengths’ or ‘limitations’ and reviewed. Themes were then assigned a name according to the codes.

The search yielded 9978 titles across the 5 databases: Web of Science (1480 results), PubMed (94 results), ASSIA (2454 results), CINAHL (5948 results) and Cochrane Library (2 results), resulting in 8553 different studies after deduplication. ORP and CH independently screened their titles and abstracts, excluding those that did not meet the criteria. After assessment, 12 studies were included (see Fig.  1 ).

figure 1

PRISMA flowchart of the study selection process

Study characteristics

The included studies were published between 2018 and 2022. Seven were conducted in the UK [ 12 , 14 , 15 , 17 , 18 , 19 , 23 ], two in Canada [ 21 , 22 ], one in Australia [ 13 ], one in Norway [ 16 ] and one in Ireland [ 20 ]. The PPI activities occurred across various settings, including a school [ 12 ], social club [ 12 ], hospital [ 17 ], university [ 22 ], theatre [ 19 ], hotel [ 20 ], or online [ 15 , 21 ], however this information was omitted in 5 studies [ 13 , 14 , 16 , 18 , 23 ]. The number of people attending the PPI sessions varied, ranging from 6 to 289, however the majority (ten studies) had less than 70 participants [ 13 , 14 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 ]. Seven studies did not provide information on the age or gender of the PPI groups. Of those that did, ages ranged from 8 to 76 and were mostly female. The ethnicities of the PPI group members were also rarely recorded (see Additional file 3 for data extraction table).

Types of creative methods

The type of creative methods used to engage the PPI groups were varied. These included songs, poems, drawings, photograph elicitation, drama performance, visualisations, Facebook, photography, prototype development, cultural animation, card sorting and creating personas (see Table  1 ). These were sometimes accompanied by traditional methods of PPI such as interviews and focus group discussions.

The 12 included studies were all deemed to be of good methodological quality, with scores ranging from 6/10 to 10/10 with the CASP critical appraisal tool [ 10 ] (Table  2 ).

Thematic analysis

Analysis identified four limitations and five strengths to creative PPI (see Fig.  2 ). Limitations included the time and resource intensity of creative PPI methods, its lack of generalisation, ethical issues and external factors. Strengths included the disruption of power hierarchies, the engaging and inclusive nature of the methods and their long-term cost and time efficiency. Creative PPI methods also allowed mundane and “taboo” topics to be discussed within a safe space.

figure 2

Theme map of strengths and limitations

Limitations of creative PPI

Creative ppi methods are time and resource intensive.

The time and resource intensive nature of creative PPI methods is a limitation, most notably for the persona-scenario methodology. Valaitis et al. [ 22 ] used 14 persona-scenario workshops with 70 participants to co-design a healthcare intervention, which aimed to promote optimal aging in Canada. Using the persona method, pairs composed of patients, healthcare providers, community service providers and volunteers developed a fictional character which they believed represented an ‘end-user’ of the healthcare intervention. Due to the depth and richness of the data produced the authors reported that it was time consuming to analyse. Further, they commented that the amount of information was difficult to disseminate to scientific leads and present at team meetings. Additionally, to ensure the production of high-quality data, to probe for details and lead group discussion there was a need for highly skilled facilitators. The resource intensive nature of the creative co-production was also noted in a study using the persona scenario and creative worksheets to develop a prototype decision support tool for individuals with malignant pleural effusion [ 17 ]. With approximately 50 people, this was also likely to yield a high volume of data to consider.

To prepare materials for populations who cannot engage in traditional methods of PPI was also timely. Kearns et al. [ 18 ] developed a feedback questionnaire for people with aphasia to evaluate ICT-delivered rehabilitation. To ensure people could participate effectively, the resources used during the workshops, such as PowerPoints, online images and photographs, had to be aphasia-accessible, which was labour and time intensive. The author warned that this time commitment should not be underestimated.

There are further practical limitations to implementing creative PPI, such as the costs of materials for activities as well as hiring a space for workshops. For example, the included studies in this review utilised pens, paper, worksheets, laptops, arts and craft supplies and magazines and took place in venues such as universities, a social club, and a hotel. Further, although not limited to creative PPI methods exclusively but rather most studies involving the public, a financial incentive was often offered for participation, as well as food, parking, transport and accommodation [ 21 , 22 ].

Creative PPI lacks generalisation

Another barrier to the use of creative PPI methods in health and social care research was the individual nature of its output. Those who participate, usually small in number, produce unique creative outputs specific to their own experiences, opinions and location. Craven et al. [ 13 ], used arts-based visualisations to develop a toolbox for adults with mental health difficulties. They commented, “such an approach might still not be worthwhile”, as the visualisations were individualised and highly personal. This indicates that the output may fail to meet the needs of its end-users. Further, these creative PPI groups were based in certain geographical regions such as Stoke-on-Trent [ 19 ] Sheffield [ 23 ], South Wales [ 12 ] or Ireland [ 20 ], which limits the extent the findings can be applied to wider populations, even within the same area due to individual nuances. Further, the study by Galler et al. [ 16 ], is specific to the Norwegian context and even then, maybe only a sub-group of the Norwegian population as the sample used was of higher socioeconomic status.

However, Grindell et al. [ 17 ], who used persona scenarios, creative worksheets and prototype development, pointed out that the purpose of this type of research is to improve a certain place, rather than apply findings across other populations and locations. Individualised output may, therefore, only be a limitation to research wanting to conduct PPI on a large scale.

If, however, greater generalisation within PPI is deemed necessary, then social media may offer a resolution. Fedorowicz et al. [ 15 ], used Facebook to gain feedback from the public on the use of video-recording methodology for an upcoming project. This had the benefit of including a more diverse range of people (289 people joined the closed group), who were spread geographically around the UK, as well as seven people from overseas.

Creative PPI has ethical issues

As with other research, ethical issues must be taken into consideration. Due to the nature of creative approaches, as well as the personal effort put into them, people often want to be recognised for their work. However, this compromises principles so heavily instilled in research such as anonymity and confidentiality. With the aim of exploring issues related to health and well-being in a town in South Wales, Byrne et al. [ 12 ], asked year 4/5 and year 10 pupils to create poems, songs, drawings and photographs. Community members also created a performance, mainly of monologues, to explore how poverty and inequalities are dealt with. Byrne noted the risks of these arts-based approaches, that being the possibility of over-disclosure and consequent emotional distress, as well as people’s desire to be named for their work. On one hand, the anonymity reduces the sense of ownership of the output as it does not portray a particular individual’s lived experience anymore. On the other hand, however, it could promote a more honest account of lived experience. Supporting this, Webber et al. [ 23 ], who used the persona method to co-design a back pain educational resource prototype, claimed that the anonymity provided by this creative technique allowed individuals to externalise and anonymise their own personal experience, thus creating a more authentic and genuine resource for future users. This implies that anonymity can be both a limitation and strength here.

The use of creative PPI methods is impeded by external factors

Despite the above limitations influencing the implementation of creative PPI techniques, perhaps the most influential is that creative methodologies are simply not mainstream [ 19 ]. This could be linked to the issues above, like time and resource intensity, generalisation and ethical issues but it is also likely to involve more systemic factors within the research community. Micsinszki et al. [ 21 ], who co-designed a hub for the health and well-being of vulnerable populations, commented that there is insufficient infrastructure to conduct meaningful co-design as well as a dominant medical model. Through a more holistic lens, there are “sociopolitical environments that privilege individualism over collectivism, self-sufficiency over collaboration, and scientific expertise over other ways of knowing based on lived experience” [ 21 ]. This, it could be suggested, renders creative co-design methodologies, which are based on the foundations of collectivism, collaboration and imagination an invalid technique in the research field, which is heavily dominated by more scientific methods offering reproducibility, objectivity and reliability.

Although we acknowledge that creative PPI techniques are not always appropriate, it may be that their main limitation is the lack of awareness of these methods or lack of willingness to use them. Further, there is always the risk that PPI, despite being a mandatory part of research, is used in a tokenistic or tick-box fashion [ 20 ], without considering the contribution that meaningful PPI could make to enhancing the research. It may be that PPI, let alone creative PPI, is not at the forefront of researchers’ minds when planning research.

Strengths of creative PPI

Creative ppi disrupts power hierarchies.

One of the main strengths of creative PPI techniques, cited most frequently in the included literature, was that they disrupt traditional power hierarchies [ 12 , 13 , 17 , 19 , 23 ]. For example, the use of theatre performance blurred the lines between professional and lay roles between the community and policy makers [ 12 ]. Individuals created a monologue to portray how poverty and inequality impact daily life and presented this to representatives of the National Assembly of Wales, Welsh Government, the Local Authority, Arts Council and Westminster. Byrne et al. [ 12 ], states how this medium allowed the community to engage with the people who make decisions about their lives in an environment of respect and understanding, where the hierarchies are not as visible as in other settings, e.g., political surgeries. Creative PPI methods have also removed traditional power hierarchies between researchers and adolescents. Cook et al. [ 13 ], used arts-based approaches to explore adolescents’ ideas about the “perfect” condom. They utilised the “Life Happens” resource, where adolescents drew and then decorated a person with their thoughts about sexual relationships, not too dissimilar from the persona-scenario method. This was then combined with hypothetical scenarios about sexuality. A condom-mapping exercise was then implemented, where groups shared the characteristics that make a condom “perfect” on large pieces of paper. Cook et al. [ 13 ], noted that usually power imbalances make it difficult to elicit information from adolescents, however these power imbalances were reduced due to the use of creative co-design techniques.

The same reduction in power hierarchies was noted by Grindell et al. [ 17 ], who used the person-scenario method and creative worksheets with individuals with malignant pleural effusion. This was with the aim of developing a prototype of a decision support tool for patients to help with treatment options. Although this process involved a variety of stakeholders, such as patients, carers and healthcare professionals, creative co-design was cited as a mechanism that worked to reduce power imbalances – a limitation of more traditional methods of research. Creative co-design blurred boundaries between end-users and clinical staff and enabled the sharing of ideas from multiple, valuable perspectives, meaning the prototype was able to suit user needs whilst addressing clinical problems.

Similarly, a specific creative method named cultural animation was also cited to dissolve hierarchies and encourage equal contributions from participants. Within this arts-based approach, Keleman et al. [ 19 ], explored the concept of “good health” with individuals from Stoke-on Trent. Members of the group created art installations using ribbons, buttons, cardboard and straws to depict their idea of a “healthy community”, which was accompanied by a poem. They also created a 3D Facebook page and produced another poem or song addressing the government to communicate their version of a “picture of health”. Public participants said that they found the process empowering, honest, democratic, valuable and practical.

This dissolving of hierarchies and levelling of power is beneficial as it increases the sense of ownership experienced by the creators/producers of the output [ 12 , 17 , 23 ]. This is advantageous as it has been suggested to improve its quality [ 23 ].

Creative PPI allows the unsayable to be said

Creative PPI fosters a safe space for mundane or taboo topics to be shared, which may be difficult to communicate using traditional methods of PPI. For example, the hypothetical nature of condom mapping and persona-scenarios meant that adolescents could discuss a personal topic without fear of discrimination, judgement or personal disclosure [ 13 ]. The safe space allowed a greater volume of ideas to be generated amongst peers where they might not have otherwise. Similarly, Webber et al. [ 23 ], , who used the persona method to co-design the prototype back pain educational resource, also noted how this method creates anonymity whilst allowing people the opportunity to externalise personal experiences, thoughts and feelings. Other creative methods were also used, such as drawing, collaging, role play and creating mood boards. A cardboard cube (labelled a “magic box”) was used to symbolise a physical representation of their final prototype. These creative methods levelled the playing field and made personal experiences accessible in a safe, open environment that fostered trust, as well as understanding from the researchers.

It is not only sensitive subjects that were made easier to articulate through creative PPI. The communication of mundane everyday experiences were also facilitated, which were deemed typically ‘unsayable’. This was specifically given in the context of describing intangible aspects of everyday health and wellbeing [ 11 ]. Graphic designers can also be used to visually represent the outputs of creative PPI. These captured the movement and fluidity of people and well as the relationships between them - things that cannot be spoken but can be depicted [ 21 ].

Creative PPI methods are inclusive

Another strength of creative PPI was that it is inclusive and accessible [ 17 , 19 , 21 ]. The safe space it fosters, as well as the dismantling of hierarchies, welcomed people from a diverse range of backgrounds and provided equal opportunities [ 21 ], especially for those with communication and memory difficulties who might be otherwise excluded from PPI. Kelemen et al. [ 19 ], who used creative methods to explore health and well-being in Stoke-on-Trent, discussed how people from different backgrounds came together and connected, discussed and reached a consensus over a topic which evoked strong emotions, that they all have in common. Individuals said that the techniques used “sets people to open up as they are not overwhelmed by words”. Similarly, creative activities, such as the persona method, have been stated to allow people to express themselves in an inclusive environment using a common language. Kearns et al. [ 18 ], who used aphasia-accessible material to develop a questionnaire with aphasic individuals, described how they felt comfortable in contributing to workshops (although this material was time-consuming to make, see ‘Limitations of creative PPI’ ).

Despite the general inclusivity of creative PPI, it can also be exclusive, particularly if online mediums are used. Fedorowicz et al. [ 15 ], used Facebook to create a PPI group, and although this may rectify previous drawbacks about lack of generalisation of creative methods (as Facebook can reach a greater number of people, globally), it excluded those who are not digitally active or have limited internet access or knowledge of technology. Online methods have other issues too. Maintaining the online group was cited as challenging and the volume of responses required researchers to interact outside of their working hours. Despite this, online methods like Facebook are very accessible for people who are physically disabled.

Creative PPI methods are engaging

The process of creative PPI is typically more engaging and produces more colourful data than traditional methods [ 13 ]. Individuals are permitted and encouraged to explore a creative self [ 19 ], which can lead to the exploration of new ideas and an overall increased enjoyment of the process. This increased engagement is particularly beneficial for younger PPI groups. For example, to involve children in the development of health food products, Galler et al. [ 16 ] asked 9-12-year-olds to take photos of their food and present it to other children in a “show and tell” fashion. They then created a newspaper article describing a new healthy snack. In this creative focus group, children were given lab coats to further their identity as inventors. Galler et al. [ 16 ], notes that the methods were highly engaging and facilitated teamwork and group learning. This collaborative nature of problem-solving was also observed in adults who used personas and creative worksheets to develop the resource for lower back pain [ 23 ]. Dementia patients too have been reported to enjoy the creative and informal approach to idea generation [ 20 ].

The use of cultural animation allowed people to connect with each other in a way that traditional methods do not [ 19 , 21 ]. These connections were held in place by boundary objects, such as ribbons, buttons, fabric and picture frames, which symbolised a shared meaning between people and an exchange of knowledge and emotion. Asking groups to create an art installation using these objects further fostered teamwork and collaboration, both at an individual and collective level. The exploration of a creative self increased energy levels and encouraged productive discussions and problem-solving [ 19 ]. Objects also encouraged a solution-focused approach and permitted people to think beyond their usual everyday scope [ 17 ]. They also allowed facilitators to probe deeper about the greater meanings carried by the object, which acted as a metaphor [ 21 ].

From the researcher’s point of view, co-creative methods gave rise to ideas they might not have initially considered. Valaitis et al. [ 22 ], found that over 40% of the creative outputs were novel ideas brought to light by patients, healthcare providers/community care providers, community service providers and volunteers. One researcher commented, “It [the creative methods] took me on a journey, in a way that when we do other pieces of research it can feel disconnected” [ 23 ]. Another researcher also stated they could not return to the way they used to do research, as they have learnt so much about their own health and community and how they are perceived [ 19 ]. This demonstrates that creative processes not only benefit the project outcomes and the PPI group, but also facilitators and researchers. However, although engaging, creative methods have been criticised for not demonstrating academic rigour [ 17 ]. Moreover, creative PPI may also be exclusive to people who do not like or enjoy creative activities.

Creative PPI methods are cost and time efficient

Creative PPI workshops can often produce output that is visible and tangible. This can save time and money in the long run as the output is either ready to be implemented in a healthcare setting or a first iteration has already been developed. This may also offset the time and costs it takes to implement creative PPI. For example, the prototype of the decision support tool for people with malignant pleural effusion was developed using personas and creative worksheets. The end result was two tangible prototypes to drive the initial idea forward as something to be used in practice [ 17 ]. The use of creative co-design in this case saved clinician time as well as the time it would take to develop this product without the help of its end-users. In the development of this particular prototype, analysis was iterative and informed the next stage of development, which again saved time. The same applies for the feedback questionnaire for the assessment of ICT delivered aphasia rehabilitation. The co-created questionnaire, designed with people with aphasia, was ready to be used in practice [ 18 ]. This suggests that to overcome time and resource barriers to creative PPI, researchers should aim for it to be engaging whilst also producing output.

That useable products are generated during creative workshops signals to participating patients and public members that they have been listened to and their thoughts and opinions acted upon [ 23 ]. For example, the development of the back pain resource based on patient experiences implies that their suggestions were valid and valuable. Further, those who participated in the cultural animation workshop reported that the process visualises change, and that it already feels as though the process of change has started [ 19 ].

The most cost and time efficient method of creative PPI in this review is most likely the use of Facebook to gather feedback on project methodology [ 15 ]. Although there were drawbacks to this, researchers could involve more people from a range of geographical areas at little to no cost. Feedback was instantaneous and no training was required. From the perspective of the PPI group, they could interact however much or little they wish with no time commitment.

This systematic review identified four limitations and five strengths to the use of creative PPI in health and social care research. Creative PPI is time and resource intensive, can raise ethical issues and lacks generalisability. It is also not accepted by the mainstream. These factors may act as barriers to the implementation of creative PPI. However, creative PPI disrupts traditional power hierarchies and creates a safe space for taboo or mundane topics. It is also engaging, inclusive and can be time and cost efficient in the long term.

Something that became apparent during data analysis was that these are not blanket strengths and limitations of creative PPI as a whole. The umbrella term ‘creative PPI’ is broad and encapsulates a wide range of activities, ranging from music and poems to prototype development and persona-scenarios, to more simplistic things like the use of sticky notes and ordering cards. Many different activities can be deemed ‘creative’ and the strengths and limitations of one does not necessarily apply to another. For example, cultural animation takes greater effort to prepare than the use of sticky notes and sorting cards, and the use of Facebook is cheaper and wider reaching than persona development. Researchers should use their discretion and weigh up the benefits and drawbacks of each method to decide on a technique which suits the project. What might be a limitation to creative PPI in one project may not be in another. In some cases, creative PPI may not be suitable at all.

Furthermore, the choice of creative PPI method also depends on the needs and characteristics of the PPI group. Children, adults and people living with dementia or language difficulties all have different engagement needs and capabilities. This indicates that creative PPI is not one size fits all and that the most appropriate method will change depending on the composition of the group. The choice of method will also be determined by the constraints of the research project, namely time, money and the research aim. For example, if there are time constraints, then a method which yields a lot of data and requires a lot of preparation may not be appropriate. If generalisation is important, then an online method is more suitable. Together this indicates that the choice of creative PPI method is highly individualised and dependent on multiple factors.

Although the limitations discussed in this review apply to creative PPI, they are not exclusive to creative PPI. Ethical issues are a consideration within general PPI research, especially when working with more vulnerable populations, such as children or adults living with a disability. It can also be the case that traditional PPI methods lack generalisability, as people who volunteer to be part of such a group are more likely be older, middle class and retired [ 24 ]. Most research is vulnerable to this type of bias, however, it is worth noting that generalisation is not always a goal and research remains valid and meaningful in its absence. Although online methods may somewhat combat issues related to generalisability, these methods still exclude people who do not have access to the internet/technology or who choose not to use it, implying that online PPI methods may not be wholly representative of the general population. Saying this, however, the accessibility of creative PPI techniques differs from person to person, and for some, online mediums may be more accessible (for example for those with a physical disability), and for others, this might be face-to-face. To combat this, a range of methods should be implemented. Planning multiple focus group and interviews for traditional PPI is also time and resource intensive, however the extra resources required to make this creative may be even greater. Although, the rich data provided may be worth the preparation and analysis time, which is also likely to depend on the number of participants and workshop sessions required. PPI, not just creative PPI, often requires the provision of a financial incentive, refreshments, parking and accommodation, which increase costs. These, however, are imperative and non-negotiable, as they increase the accessibility of research, especially to minority and lower-income groups less likely to participate. Adequate funding is also important for co-design studies where repeated engagement is required. One barrier to implementation, which appears to be exclusive to creative methods, however, is that creative methods are not mainstream. This cannot be said for traditional PPI as this is often a mandatory part of research applications.

Regarding the strengths of creative PPI, it could be argued that most appear to be exclusive to creative methodologies. These are inclusive by nature as multiple approaches can be taken to evoke ideas from different populations - approaches that do not necessarily rely on verbal or written communication like interviews and focus groups do. Given the anonymity provided by some creative methods, such as personas, people may be more likely to discuss their personal experiences under the guise of a general end-user, which might be more difficult to maintain when an interviewer is asking an individual questions directly. Additionally, creative methods are by nature more engaging and interactive than traditional methods, although this is a blanket statement and there may be people who find the question-and-answer/group discussion format more engaging. Creative methods have also been cited to eliminate power imbalances which exist in traditional research [ 12 , 13 , 17 , 19 , 23 ]. These imbalances exist between researchers and policy makers and adolescents, adults and the community. Lastly, although this may occur to a greater extent in creative methods like prototype development, it could be suggested that PPI in general – regardless of whether it is creative - is more time and cost efficient in the long-term than not using any PPI to guide or refine the research process. It must be noted that these are observations based on the literature. To be certain these differences exist between creative and traditional methods of PPI, direct empirical evaluation of both should be conducted.

To the best of our knowledge, this is the first review to identify the strengths and limitations to creative PPI, however, similar literature has identified barriers and facilitators to PPI in general. In the context of clinical trials, recruitment difficulties were cited as a barrier, as well as finding public contributors who were free during work/school hours. Trial managers reported finding group dynamics difficult to manage and the academic environment also made some public contributors feel nervous and lacking confidence to speak. Facilitators, however, included the shared ownership of the research – something that has been identified in the current review too. In addition, planning and the provision of knowledge, information and communication were also identified as facilitators [ 25 ]. Other research on the barriers to meaningful PPI in trial oversight committees included trialist confusion or scepticism over the PPI role and the difficulties in finding PPI members who had a basic understanding of research [ 26 ]. However, it could be argued that this is not representative of the average patient or public member. The formality of oversight meetings and the technical language used also acted as a barrier, which may imply that the informal nature of creative methods and its lack of dependency on literacy skills could overcome this. Further, a review of 42 reviews on PPI in health and social care identified financial compensation, resources, training and general support as necessary to conduct PPI, much like in the current review where the resource intensiveness of creative PPI was identified as a limitation. However, others were identified too, such as recruitment and representativeness of public contributors [ 27 ]. Like in the current review, power imbalances were also noted, however this was included as both a barrier and facilitator. Collaboration seemed to diminish hierarchies but not always, as sometimes these imbalances remained between public contributors and healthcare staff, described as a ‘them and us’ culture [ 27 ]. Although these studies compliment the findings of the current review, a direct comparison cannot be made as they do not concern creative methods. However, it does suggest that some strengths and weaknesses are shared between creative and traditional methods of PPI.

Strengths and limitations of this review

Although a general definition of creative PPI exists, it was up to our discretion to decide exactly which activities were deemed as such for this review. For example, we included sorting cards, the use of interactive whiteboards and sticky notes. Other researchers may have a more or less stringent criteria. However, two reviewers were involved in this decision which aids the reliability of the included articles. Further, it may be that some of the strengths and limitations cannot fully be attributed to the creative nature of the PPI process, but rather their co-created nature, however this is hard to disentangle as the included papers involved both these aspects.

During screening, it was difficult to decide whether the article was utilising creative qualitative methodology or creative PPI , as it was often not explicitly labelled as such. Regardless, both approaches involved the public/patients refining a healthcare product/service. This implies that if this review were to be replicated, others may do it differently. This may call for greater standardisation in the reporting of the public’s involvement in research. For example, the NIHR outlines different approaches to PPI, namely “consultation”, “collaboration”, “co-production” and “user-controlled”, which each signify an increased level of public power and influence [ 28 ]. Papers with elements of PPI could use these labels to clarify the extent of public involvement, or even explicitly state that there was no PPI. Further, given our decision to include only scholarly peer-reviewed literature, it is possible that data were missed within the grey literature. Similarly, the literature search will not have identified all papers relating to different types of accessible inclusion. However, the intent of the review was to focus solely on those within the definition of creative.

This review fills a gap in the literature and helps circulate and promote the concept of creative PPI. Each stage of this review, namely screening and quality appraisal, was conducted by two independent reviewers. However, four full texts could not be accessed during the full text reading stage, meaning there are missing data that could have altered or contributed to the findings of this review.

Research recommendations

Given that creative PPI can require effort to prepare, perform and analyse, sufficient time and funding should be allocated in the research protocol to enable meaningful and continuous PPI. This is worthwhile as PPI can significantly change the research output so that it aligns closely with the needs of the group it is to benefit. Researchers should also consider prototype development as a creative PPI activity as this might reduce future time/resource constraints. Shifting from a top-down approach within research to a bottom-up can be advantageous to all stakeholders and can help move creative PPI towards the mainstream. This, however, is the collective responsibility of funding bodies, universities and researchers, as well as committees who approve research bids.

A few of the included studies used creative techniques alongside traditional methods, such as interviews, which could also be used as a hybrid method of PPI, perhaps by researchers who are unfamiliar with creative techniques or to those who wish to reap the benefits of both. Often the characteristics of the PPI group were not included, including age, gender and ethnicity. It would be useful to include such information to assess how representative the PPI group is of the population of interest.

Creative PPI is a relatively novel approach of engaging the public and patients in research and it has both advantages and disadvantages compared to more traditional methods. There are many approaches to implementing creative PPI and the choice of technique will be unique to each piece of research and is reliant on several factors. These include the age and ability of the PPI group as well as the resource limitations of the project. Each method has benefits and drawbacks, which should be considered at the protocol-writing stage. However, given adequate funding, time and planning, creative PPI is a worthwhile and engaging method of generating ideas with end-users of research – ideas which may not be otherwise generated using traditional methods.

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

Critical Appraisal Skills Programme

The Joanna Briggs Institute

National Institute of Health and Care Research

Public Advisory Group

Public and Patient Involvement

Web of Science

National Institute for Health and Care Research. What Is Patient and Public Involvement and Public Engagement? https://www.spcr.nihr.ac.uk/PPI/what-is-patient-and-public-involvement-and-engagement Accessed 01 Sept 2023.

Department of Health. Personal and Public Involvement (PPI) https://www.health-ni.gov.uk/topics/safety-and-quality-standards/personal-and-public-involvement-ppi#:~:text=The Health and Social Care Reform Act (NI) 2009 placed,delivery and evaluation of services . Accessed 01 Sept 2023.

National Institute for Health and Care Research. Policy Research Programme – Guidance for Stage 1 Applications https://www.nihr.ac.uk/documents/policy-research-programme-guidance-for-stage-1-applications-updated/26398 Accessed 01 Sept 2023.

Greenhalgh T, Hinton L, Finlay T, Macfarlane A, Fahy N, Clyde B, Chant A. Frameworks for supporting patient and public involvement in research: systematic review and co-design pilot. Health Expect. 2019. https://doi.org/10.1111/hex.12888

Article   PubMed   PubMed Central   Google Scholar  

Street JM, Stafinski T, Lopes E, Menon D. Defining the role of the public in health technology assessment (HTA) and HTA-informed decision-making processes. Int J Technol Assess Health Care. 2020. https://doi.org/10.1017/S0266462320000094

Article   PubMed   Google Scholar  

Morrison C, Dearden A. Beyond tokenistic participation: using representational artefacts to enable meaningful public participation in health service design. Health Policy. 2013. https://doi.org/10.1016/j.healthpol.2013.05.008

Leavy P. Method meets art: arts-Based Research Practice. New York: Guilford; 2020.

Google Scholar  

Seers K. Qualitative systematic reviews: their importance for our understanding of research relevant to pain. Br J Pain. 2015. https://doi.org/10.1177/2049463714549777

Lockwood C, Porritt K, Munn Z, Rittenmeyer L, Salmond S, Bjerrum M, Loveday H, Carrier J, Stannard D. Chapter 2: Systematic reviews of qualitative evidence. Aromataris E, Munn Z, editors. JBI Manual for Evidence Synthesis JBI. 2020. https://synthesismanual.jbi.global . https://doi.org/10.46658/JBIMES-20-03

CASP. CASP Checklists https://casp-uk.net/images/checklist/documents/CASP-Qualitative-Studies-Checklist/CASP-Qualitative-Checklist-2018_fillable_form.pdf (2022).

Braun V, Clarke V. Using thematic analysis in psychology. Qualitative Res Psychol. 2006. https://doi.org/10.1191/1478088706qp063oa

Article   Google Scholar  

Byrne E, Elliott E, Saltus R, Angharad J. The creative turn in evidence for public health: community and arts-based methodologies. J Public Health. 2018. https://doi.org/10.1093/pubmed/fdx151

Cook S, Grozdanovski L, Renda G, Santoso D, Gorkin R, Senior K. Can you design the perfect condom? Engaging young people to inform safe sexual health practice and innovation. Sex Educ. 2022. https://doi.org/10.1080/14681811.2021.1891040

Craven MP, Goodwin R, Rawsthorne M, Butler D, Waddingham P, Brown S, Jamieson M. Try to see it my way: exploring the co-design of visual presentations of wellbeing through a workshop process. Perspect Public Health. 2019. https://doi.org/10.1177/1757913919835231

Fedorowicz S, Riley V, Cowap L, Ellis NJ, Chambers R, Grogan S, Crone D, Cottrell E, Clark-Carter D, Roberts L, Gidlow CJ. Using social media for patient and public involvement and engagement in health research: the process and impact of a closed Facebook group. Health Expect. 2022. https://doi.org/10.1111/hex.13515

Galler M, Myhrer K, Ares G, Varela P. Listening to children voices in early stages of new product development through co-creation – creative focus group and online platform. Food Res Int. 2022. https://doi.org/10.1016/j.foodres.2022.111000

Grindell C, Tod A, Bec R, Wolstenholme D, Bhatnagar R, Sivakumar P, Morley A, Holme J, Lyons J, Ahmed M, Jackson S, Wallace D, Noorzad F, Kamalanathan M, Ahmed L, Evison M. Using creative co-design to develop a decision support tool for people with malignant pleural effusion. BMC Med Inf Decis Mak. 2020. https://doi.org/10.1186/s12911-020-01200-3

Kearns Á, Kelly H, Pitt I. Rating experience of ICT-delivered aphasia rehabilitation: co-design of a feedback questionnaire. Aphasiology. 2020. https://doi.org/10.1080/02687038.2019.1649913

Kelemen M, Surman E, Dikomitis L. Cultural animation in health research: an innovative methodology for patient and public involvement and engagement. Health Expect. 2018. https://doi.org/10.1111/hex.12677

Keogh F, Carney P, O’Shea E. Innovative methods for involving people with dementia and carers in the policymaking process. Health Expect. 2021. https://doi.org/10.1111/hex.13213

Micsinszki SK, Buettgen A, Mulvale G, Moll S, Wyndham-West M, Bruce E, Rogerson K, Murray-Leung L, Fleisig R, Park S, Phoenix M. Creative processes in co-designing a co-design hub: towards system change in health and social services in collaboration with structurally vulnerable populations. Evid Policy. 2022. https://doi.org/10.1332/174426421X16366319768599

Valaitis R, Longaphy J, Ploeg J, Agarwal G, Oliver D, Nair K, Kastner M, Avilla E, Dolovich L. Health TAPESTRY: co-designing interprofessional primary care programs for older adults using the persona-scenario method. BMC Fam Pract. 2019. https://doi.org/10.1186/s12875-019-1013-9

Webber R, Partridge R, Grindell C. The creative co-design of low back pain education resources. Evid Policy. 2022. https://doi.org/10.1332/174426421X16437342906266

National Institute for Health and Care Research. A Researcher’s Guide to Patient and Public Involvement. https://oxfordbrc.nihr.ac.uk/wp-content/uploads/2017/03/A-Researchers-Guide-to-PPI.pdf Accessed 01 Nov 2023.

Selman L, Clement C, Douglas M, Douglas K, Taylor J, Metcalfe C, Lane J, Horwood J. Patient and public involvement in randomised clinical trials: a mixed-methods study of a clinical trials unit to identify good practice, barriers and facilitators. Trials. 2021 https://doi.org/10.1186/s13063-021-05701-y

Coulman K, Nicholson A, Shaw A, Daykin A, Selman L, Macefield R, Shorter G, Cramer H, Sydes M, Gamble C, Pick M, Taylor G, Lane J. Understanding and optimising patient and public involvement in trial oversight: an ethnographic study of eight clinical trials. Trials. 2020. https://doi.org/10.1186/s13063-020-04495-9

Ocloo J, Garfield S, Franklin B, Dawson S. Exploring the theory, barriers and enablers for patient and public involvement across health, social care and patient safety: a systematic review of reviews. Health Res Policy Sys. 2021. https://doi.org/10.1186/s12961-020-00644-3

National Institute for Health and Care Research. Briefing notes for researchers - public involvement in NHS, health and social care research. https://www.nihr.ac.uk/documents/briefing-notes-for-researchers-public-involvement-in-nhs-health-and-social-care-research/27371 Accessed 01 Nov 2023.

Download references

Acknowledgements

With thanks to the PHIRST-LIGHT public advisory group and consortium for their thoughts and contributions to the design of this work.

The research team is supported by a National Institute for Health and Care Research grant (PHIRST-LIGHT Reference NIHR 135190).

Author information

Olivia R. Phillips and Cerian Harries share joint first authorship.

Authors and Affiliations

Nottingham Centre for Public Health and Epidemiology, Lifespan and Population Health, School of Medicine, University of Nottingham, Clinical Sciences Building, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK

Olivia R. Phillips, Jo Leonardi-Bee, Holly Knight & Joanne R. Morling

National Institute for Health and Care Research (NIHR) PHIRST-LIGHT, Nottingham, UK

Olivia R. Phillips, Cerian Harries, Jo Leonardi-Bee, Holly Knight, Lauren B. Sherar, Veronica Varela-Mato & Joanne R. Morling

School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK

Cerian Harries, Lauren B. Sherar & Veronica Varela-Mato

Nottingham Centre for Evidence Based Healthcare, School of Medicine, University of Nottingham, Nottingham, UK

Jo Leonardi-Bee

NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, NG7 2UH, UK

Joanne R. Morling

You can also search for this author in PubMed   Google Scholar

Contributions

Author contributions: study design: ORP, CH, JRM, JLB, HK, LBS, VVM, literature searching and screening: ORP, CH, JRM, data curation: ORP, CH, analysis: ORP, CH, JRM, manuscript draft: ORP, CH, JRM, Plain English Summary: ORP, manuscript critical review and editing: ORP, CH, JRM, JLB, HK, LBS, VVM.

Corresponding author

Correspondence to Olivia R. Phillips .

Ethics declarations

Ethics approval and consent to participate.

The Ethics Committee of the Faculty of Medicine and Health Sciences, University of Nottingham advised that approval from the ethics committee and consent to participate was not required for systematic review studies.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40900_2024_580_MOESM1_ESM.docx

Additional file 1: Search strings: Description of data: the search strings and filters used in each of the 5 databases in this review

Additional file 2: Quality appraisal questions: Description of data: CASP quality appraisal questions

40900_2024_580_moesm3_esm.docx.

Additional file 3: Table 1: Description of data: elements of the data extraction table that are not in the main manuscript

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Phillips, O.R., Harries, C., Leonardi-Bee, J. et al. What are the strengths and limitations to utilising creative methods in public and patient involvement in health and social care research? A qualitative systematic review. Res Involv Engagem 10 , 48 (2024). https://doi.org/10.1186/s40900-024-00580-4

Download citation

Received : 28 November 2023

Accepted : 25 April 2024

Published : 13 May 2024

DOI : https://doi.org/10.1186/s40900-024-00580-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Public and patient involvement
  • Creative PPI
  • Qualitative systematic review

Research Involvement and Engagement

ISSN: 2056-7529

youngest person to publish research paper

IMAGES

  1. YOUNGEST RESEARCHER TO PUBLISH HIS RESEARCH PAPER IN A REPUTED JOURNAL

    youngest person to publish research paper

  2. YOUNGEST PERSON TO PUBLISH RESEARCH PAPER ON SPACE

    youngest person to publish research paper

  3. Youngest researcher to publish research paper in reputed journal

    youngest person to publish research paper

  4. How to publish research paper

    youngest person to publish research paper

  5. How to publish your first Research Paper? Detailed Step by Step Procedure

    youngest person to publish research paper

  6. how to publish research paper

    youngest person to publish research paper

VIDEO

  1. Youngest Child Be Like

  2. Meet the three-year-old Emirati Guinness World Record holder

  3. When your supervisors ask you to write a journal paper after finishing your PhD #shortsfeed #shorts

  4. Expert Tips for Writing a Research Article for Publication

  5. Meet a young author who has been writing, illustrating his own children's books

  6. Achieving Success: Journal Publication Strategies

COMMENTS

  1. Emily Rosa

    Emily Rosa (born February 6, 1987) is the youngest person to have a research paper published in a peer reviewed medical journal. At age nine Rosa conceived and executed a scientific study of therapeutic touch which was published in the Journal of the American Medical Association in 1998. She graduated from the University of Colorado at Denver in 2009 with a major in psychology.

  2. 8 Youngest Published Authors Around the World

    8. Nancy Yi Fan. Age Published: 12 years old (DOB August 26, 1993) Birthplace: Beijing, China. Education: Went on to study at Harvard University. Books Published: 3. photo source: Amazon. At 7 years old, Nancy Fan moved from Beijing to New York with her parents.

  3. A research by 9-yr-old Emily Rosa

    It'd be nice if it cultivated her interest. Nevertheless, I must point out (for accuracy) that this is not "A research by 9-yr-old Emily Rosa - the youngest person ever to have a paper published in JAMA". Emily Rosa most probably could not begin to write a paper, let alone publish one. The caliber of the paper is evidence of the fact.

  4. TIL the youngest person to have a research paper published in ...

    TIL the youngest person to have a research paper published in a peer-reviewed medical journal is Emily Rosa (aged 9 at the time). Her paper set showed how the Human Energy Field and 'Therapeutic Touch' was largely quackery ... Her simple experiment was well designed and documented, so the journal published it as sort of a gotcha moment. The ...

  5. Some scientists publish more than 70 papers a year. Here's how ...

    Like Stephen Kings of academia, some researchers are unusually prolific publishers, appearing as an author on as many as 72 scientific papers a year—or about every 5 days. John Ioannidis, a statistician at Stanford University in Palo Alto, California, wondered whether some of them were gaming the system. So he and colleagues dove into the ...

  6. Perth boy Rehan Somaweera has become one of Australia's youngest

    A father and son bonding over their love for snorkeling has lead to 10-year-old Rehan Somaweera becoming one of the youngest people in Australia to author a published scientific paper. Key points:

  7. Thousands of scientists publish a paper every five days

    When we excluded conference papers, almost two-thirds belonged to medical and life sciences (86/131). Among the 265, 154 authors produced more than the equivalent of one paper every 5 days for 2 ...

  8. Engaging young scholars in science through publication: A survey

    Young researchers are often excluded from the scholarly processes of peer-review and publication, which are cornerstones of scholarly work. The Journal of Emerging Investigators is an open access journal dedicated to publishing the research of middle and high school students. We surveyed student authors before and after they participated in the peer-review and publication process of their ...

  9. Quora

    We would like to show you a description here but the site won't allow us.

  10. How to Write and Publish a Research Paper for a Peer ...

    Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common ...

  11. At 13 Ritaj Hussain Alhazmi is the youngest author to publish a book

    It takes years for people to get their first book published, but Ritaj Hussain Alhazmi has not one but three of her books published. With three novels in print, Alhazmi, 13, has been named the world's "youngest person to publish a book series (female)" by Guinness World Records.

  12. YOUNG: Sage Journals

    The aim of YOUNG is to bring young people's experiences to the centre of analysis with a view to strengthening and promoting multidisciplinary, contemporary and historical youth research with an international perspective. The journal is a forum for critical discussion and encourages submission of papers from all countries and contexts.

  13. How to Publish a Research Paper: A Step-by-Step Guide

    Step 2: Finding the Right Journal. Understanding how to publish a research paper involves selecting the appropriate journal for your work. This step is critical for successful publication, and you should take several factors into account when deciding which journal to apply for: Conduct thorough research to identify journals that specialise in ...

  14. Publishing Your Research as a High Schooler: 18 Journals and

    Type of research: Including but not limited to research papers, review articles, and humanity/social science pieces. Curieux Academic Journal is a non-profit run by students and was founded in 2017 to publish outstanding research by high school and middle school students. Curieux publishes one issue per month (twelve per year), so there are ...

  15. Youngest Researcher to Publish His Research Paper in A Reputed Journal

    The record for being the youngest researcher to publish his research paper in a reputed journal was set by Tannay Sanjeev Kumar (born on November 3, 2005) of Mumbai, Maharashtra. His article titled 'Optical Fiber' was published in Asian Journal of Convergence in Technology on March 28, 2020 at the age of 14 years, 4 months and 25 days, as ...

  16. Meet India's Youngest PhD Holder Who Completed His MSc At 10 Years Old

    Tulsi was born on September 9th, 1987, in Patna, Bihar. Son of Supreme Court advocate Tulsi Narayan Prasad, his parents noticed his pace of learning at a very early age. He was in fact one of the youngest to ever complete his high-school, graduation, masters and PhD. He reportedly completed his high school when he was just 9 years old -- an age ...

  17. Young writer breaks two records before the age of five as he publishes

    After 20 days, he managed to write a sequel to that book, earning him the title for youngest person to publish a book series (male) at the age of 4 years and 238 days old. The book was published in the United Arab Emirates by Rainbow Chimney Educational Aids, a commercial publishing house that focuses on children aged up to 13 years old.

  18. YOUNGEST PERSON TO PUBLISH RESEARCH PAPER ON SPACE

    The world record of "YOUNGEST PERSON TO PUBLISH RESEARCH PAPER ON SPACE" is achieved by UTKARSH CHHAJED on 23rd February 2021 from Thane (Maharashtra) India....

  19. How Teens Can Publish Scientific Research Before College

    It offers an exciting opportunity for students who want to publish their scientific findings in a peer-reviewed scientific journal before they go to college. JEI is a non-profit group, operated by graduate students, postdoctoral fellows, and professors across the US, that gives teens feedback on original research and helps them publish their ...

  20. AMS :: Journal of the American Mathematical Society

    Advancing research. Creating connections. Submission. All articles submitted to this journal are peer-reviewed. The Journal of the AMS has a single anonymous process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.The AMS uses Centralized Manuscript Processing for initial submissions to AMS ...

  21. 15 Journals to Publish Your Research in High School

    Curieux: The Curieux Academic Journal is a youth-led nonprofit founded in 2017 to publish research by high school and middle school students. They currently operate in California but have editors from across the nation. Submitting your paper to Curieux is a great way to get experience in the craft of academic writing.

  22. Meet Anaya Lee Willabus, America's Youngest Chapter Book Author

    Anaya Lee Willabus is the youngest person to publish a chapter book in US history! This nine-year-old girl from Brooklyn New York wrote and published her own chapter book titled "The Day Mohan Found His Confidence". This record setting book features a boy struggling to balance life at home and at school. It reminds readers of all ages that with ...

  23. Cultural Relativity and Acceptance of Embryonic Stem Cell Research

    Voices in Bioethics is currently seeking submissions on philosophical and practical topics, both current and timeless. Papers addressing access to healthcare, the bioethical implications of recent Supreme Court rulings, environmental ethics, data privacy, cybersecurity, law and bioethics, economics and bioethics, reproductive ethics, research ethics, and pediatric bioethics are sought.

  24. These 10 institutions published the most papers in Nature and Science

    A paper published in Nature also attracted a lot of attention in 2018, when UC Berkeley researchers, along with an international team, described a microchip that uses light to transmit data. The ...

  25. Frontiers

    The development of university students' skills to successfully produce scientific documents has been a recurring topic of study in academia. This paper analyzes the implementation of a training experience using a digital environment mediated by video content materials starring humanoid robots. The research aimed to scale complex thinking and its subcompetencies as a hinge to strengthen basic ...

  26. Frontiers

    This paper demonstrates how people can manipulate their beliefs in order to obtain the self-image of an altruistic person. I present an online experiment in which subjects need to decide whether to behave altruistically or selfishly in an ambiguous environment. Due to the nature of ambiguity in this environment, those who are pessimistic have a legitimate reason to behave selfishly. Thus ...

  27. Journal of Medical Internet Research

    Background: The increased pervasiveness of digital health technology is producing large amounts of person-generated health data (PGHD). These data can empower people to monitor their health to promote prevention and management of disease. Women make up one of the largest groups of consumers of digital self-tracking technology. Objective: In this scoping review, we aimed to (1) identify the ...

  28. What are the strengths and limitations to utilising creative methods in

    Creative PPI methods were used to engage with people as research advisors, rather than study participants. Only primary data published in English from 2009 were accepted. ... primary research papers from 2009 to 2023 were included. This was the chosen timeframe as in 2009 the Health and Social Reform Act made it mandatory for certain Health and ...