
SUBMIT YOUR ARTICLE
CERTIFICATE

![research paper in hindi language SHIKSHAN SANSHODHAN [ ISSN(O): 2581-6241 ] Peer-Reviewed, Referred, Indexed Research Journal. Impact Factor : 6.471](https://shikshansanshodhan.researchculturesociety.org/wp-content/uploads/SS-WP-TITLE.png)
SHIKSHAN SANSHODHAN [ ISSN(O): 2581-6241 ] Peer-Reviewed, Referred, Indexed Research Journal. Impact Factor : 6.471
Research Paper, Article Publication in Hindi, Gujarati, Sanskrit, English and other National Languages.
Shikshan Sanshodhan : Journal of Arts, Humanities and Social Sciences
शिक्षण संशोधन : कला, मानविकी और सामाजिक विज्ञान जर्नल
Monthly, Peer-Reviewed, Refereed, Indexed Research Journal.
Publication in Asian and European Countries Languages : Multilingual Publications.
Impact Factor : 6.471
- Shikshan Sanshodhan is an Open-Access, Peer-Reviewed, Indexed, Refereed Research Journal.
- Author Research Guidelines & Support.
- Platform to researchers and scholars of different study fields and languages.
- Reliable, Easy and Rapidly growing Publication with nominal processing charge.
- Communication of authors to get the manuscript status time to time.
- Full text of all articles in the form of PDF format and Digital Object Identification DOIs.
- Individual copy of “Certificate of Publication” to all Authors of Paper.
- Indexing of Journal in major online journal databases like Google Scholar, Academia, Scribd, Mendeley.
- Open Access Journal Database for High visibility and promotion of your article with keyword and abstract.
You cannot copy content of this page
- अन्वेषण करें हमारे बारे में समुदाय विविध लेख श्रेणियाँ
- श्रेणियाँ (categories) खोजें
- विकिहाउ के बारे में
- लॉग इन/ खाता बनाएं
- शिक्षा और संचार

कैसे एक शोधपत्र (Research Paper) लिखें
इस आर्टिकल के सहायक लेखक (co-author) हमारी बहुत ही अनुभवी एडिटर और रिसर्चर्स (researchers) टीम से हैं जो इस आर्टिकल में शामिल प्रत्येक जानकारी की सटीकता और व्यापकता की अच्छी तरह से जाँच करते हैं। wikiHow's Content Management Team बहुत ही सावधानी से हमारे एडिटोरियल स्टाफ (editorial staff) द्वारा किये गए कार्य को मॉनिटर करती है ये सुनिश्चित करने के लिए कि सभी आर्टिकल्स में दी गई जानकारी उच्च गुणवत्ता की है कि नहीं। यहाँ पर 8 रेफरेन्स दिए गए हैं जिन्हे आप आर्टिकल में नीचे देख सकते हैं। यह आर्टिकल १,२७,४६९ बार देखा गया है।
स्कूल की ऊंची कक्षाओं में पढ़ने के दौरान और कॉलेज पीरियड में हमेशा ही, आपको शोध-पत्र तैयार करने के लिए कहा जाएगा। एक शोध-पत्र का इस्तेमाल वैज्ञानिक, तकनीकी और सामाजिक मुद्दों की ख़ोज-बीन और पहचान में किया जा सकता है। यदि शोध-पत्र लेखन का आपका यह पहला अवसर है, तो बेशक कुछ डरावना भी लग सकता है, पर मस्तिष्क को अच्छी तरह से संयोजित और एकाग्र करें, तो आप खुद के लिए इस प्रक्रिया को आसान बना सकते हैं। शोध-पत्र तो स्वयं नहीं लिख जाएगा, पर आप इस प्रकार से योजना बना सकते हैं, और ऐसी तैयारी कर सकते हैं कि लेखन व्यावहारिक रूप में खुद-ब-खुद जेहन में उतरता चला जाए।
अपने विषयवस्तु का चयन

- आम तौर पर, वेबसाइट जिनके नाम के अंत में .edu, .gov, या .org होता है, ऎसी सूचनाएं रखती हैं जिन्हें इस्तेमाल किया जा सकता है। ऐसा इसलिए है कि ये वेबसाइट स्कूलों, सरकार या उन संगठनों की होती हैं जो आपके विषय से सम्बंधित हैं।
- अपनी खोज का प्रश्न बार-बार बदलें ताकि आपके विषय पर अलग-अलग तरह के खोज परिणाम मिलें। अगर कुछ भी मिलता नज़र न आये तो ऐसा हो सकता है कि आपकी खोज का प्रश्न अधिकाँश लेखों के शीर्षक से मेल नहीं खा रहा है जो आपके विषय पर हैं।

- ऐसे डेटाबेस ढूंढ़िए जो आपके विषय को ही सम्मिलित करते हों। उदहारण के लिए PsycINFO एक ऐसा डेटाबेस है जो कि केवल मनोविज्ञान और समाजशास्त्र के क्षेत्र में ही विद्वानों द्वारा किये काम को सम्मिलित करता है। एक सामान्य खोज के मुकाबले यह आपको अपने अनुरूप शोध सामग्री पाने में मदद करेगा। [२] X रिसर्च सोर्स
- पूछताछ के एकाधिक खोज-बॉक्स या केवल केवल एक ही प्रकार के स्रोत वाले आर्काइव के साथ अधिकाँश अकादमिक डेटाबेस आपको ये सुविधा देते हैं कि आप बेहद विशिष्ट सूचना मांग सकें (जैसे केवल जर्नल आलेख या केवल समाचार पत्र)। इस सुविधा का लाभ उठाकर जितने अधिक खोज बॉक्स आप इस्तेमाल कर सकते हैं उतना करें।
- अपने विभाग के पुस्तकालय जाएँ और लाइब्रेरियन से अकादमिक डेटाबेस, जिनकी सदस्यता ली गयी है, की पूरी सूची और उनके पासवर्ड ले लें।
एक रूपरेखा का निर्माण

- रूपरेखा बनाने और शोधपत्र लिखने का काम आखिरकार आसान करने के लिए टीका-टिप्पणी का काम गहनता से कीजिये। जिस चीज़ के महत्वपूर्ण होने का आपको ज़रा भी अंदेशा हो या जो आपके शोधपत्र में इस्तेमाल हो सकता है, उसकी निशानदेही कर लीजिए।
- जैसे-जैसे आप अपने शोध में महत्वपूर्ण हिस्सों को चिन्हित करते जाएँ, अपनी टिप्पणी और नोट जोड़ते जाएँ कि इन्हें आप अपने शोध-पत्र में कहाँ इस्तेमाल करेंगे। अपने विचारों को लिखना जैसे-जैसे वे आते जाएँ, आपके शोधपत्र लेखन को कहीं आसान बना देगा और ऎसी सामग्री के रूप में रहेगा जिसे आप सन्दर्भ के लिए फिर-फिर इस्तेमाल कर सकें।

- हर उद्धरण या विषय जिसे आपने चिन्हित किया है उसे अलग-अलग नोट कार्ड पर लिखने की कोशिश कीजिए। इस तरह से आप अपने कार्डों को मनचाहे ढंग से पुनर्व्यवस्थित कर सकेंगे।
- अपने नोट का रंगों में कोड बना लें, ताकि वे आसान हो जाएँ। अलग-अलग स्रोतों से जो भी नोट आप ले रहे हैं, उन्हें सूची बद्ध कर लें, और फिर सूचना के अलग-अलग वर्गों को अलग-अलग रंगों में चिन्हित कर लें। उदाहरण के लिए, जो कुछ भी आप किसी विशेष किताब या जर्नल से ले रहे हैं उन्हें एक कागज़ पर लिख लें ताकि नोट्स को सुगठित किया जा सके, और फिर जो कुछ भी चरित्रों से सम्बंधित है उसे हरे से चिन्हित करें, कथानक से जुड़े सबकुछ को नारंगी रंग में चिन्हित करें, आदि-आदि।

- एक तार्किक शोधपत्र विवादित विषयों पर एक पक्ष लेता है और एक दृष्टिकोण के लिए तर्क प्रस्तुत करता है। मुद्दे पर एक तर्कसंगत प्रतिपक्ष के साथ बहस की जानी चाहिए।
- एक विश्लेषणात्मक शोधपत्र किसी महत्त्वपूर्ण विषय पर नए सिरे से दृष्टिपात करता है। विषय आवश्यक नहीं है कि विवादित हो, पर आपको अपने पाठकों को सहमत करना पड़ेगा कि आपके विचारों में गुणवत्ता है। यह महज आपके शोध से विचारों की उबकाई भर नहीं, बल्कि अपने उन विशिष्ट अद्वितीय विचारों की प्रस्तुति है जिन्हें आपने गहन शोध से सीखा है।

- थीसिस विकसित करने का आसान तरीका है कि उसे एक प्रश्न के रूप में ढालिए जिसका आपका निबंध उत्तर देगा। वह मुख्य प्रश्न या हाइपोथीसिस क्या है जिसको आप अपने शोधपत्र में प्रमाणित करना चाहते हैं? उदाहरण के लिए आपकी थीसिस का प्रश्न हो सकता है, “मानसिक बीमारियों के इलाज की सफलता को सांस्कृतिक स्वीकृति कैसे प्रभावित करती है?” यह प्रश्न आपकी थीसिस क्या होगी उसे निर्धारित कर सकता है – इस प्रश्न के लिए आपका जो भी उत्तर होगा, वही आपका थीसिस-कथन होगा।
- शोधपत्र के सभी तर्कों को दिए बिना या उसकी रूपरेखा बताये बिना ही आपकी थीसिस को आपके शोध के मुख्य विचार को व्यक्त करना होगा। यह एक सरल कथन होना चाहिए, न कि कई सहायक वाक्यों का एक समूह, आपका बाक़ी शोधपत्र तो इस काम के लिए है ही!

- जब आप अपने मुख्य विचारों की रूप-रेखा बनाएं, उनको एक विशिष्ट क्रम में रखना अहम है। अपने सबसे मज़बूत तर्कों को निबंध के सबसे पहले और सबसे अंत में रखिये। जबकि ज्यादा औसत बिन्दुओं को निबंध के बीचोंबीच या अंत की तरफ रखिये।
- सबसे मुख्य बिन्दुओं को एक ही पैराग्राफ में समेटना ज़रूरी नहीं है, विशेष करके अगर आप एक अपेक्षाकृत लंबा शोधपत्र लिख रहे हैं। प्रमुख विचारों को जितने पैराग्राफ में आप ज़रूरी समझें फैलाकर लिख सकते हैं।

- अपनी हर बात को साक्ष्यों से पुष्ट करें। क्योंकि यह एक शोधपत्र है इसलिए ऐसी टिप्पणी न करें जिसकी पुष्टि सीधे आपके शोध के तथ्यों से न हो।
- अपने शोध में पर्याप्त व्याख्याएं दीजिये। बिना तथ्यों के अपने मत के बखान का विलोम बगैर किसी व्याख्या के बिना तथ्यों को देना होगा। यद्यपि आप निश्चित ही पर्याप्त प्रमाण देना चाहते हैं, तो भी जहां भी संभव हो अपनी टिप्पणी जोड़ते हुए यह सुनिश्चित कीजिए कि शोधपत्र पर आपकी मौलिक और विशिष्ट छाप हो।
- बहुत सारे सीधे लम्बे उद्धरण देने से बचें। यद्यपि आपका निबंध शोध पर आधारित है, फिर भी महत्वपूर्ण बात यह है कि आपको अपने विचार प्रस्तुत करने हैं। जिस उद्धरण का आप इस्तेमाल करना चाहते हैं, जब तक वह बेहद अनिवार्य न हो, उसे अपने ही शब्दों में व्यक्त और विश्लेषित करने की कोशिश कीजिए।
- अपने पेपर में साफ़-सुथरे और संतुलित गति से एक बिंदु से दूसरे तक जाने का प्रयास करें। निबंध में स्वछन्द तारतम्य और प्रवाह होना चाहिए, इसके बजाय कि अनाड़ी की तरह रुक-रुक कर क्रम टूटे और फिर अचानक शुरू हो जाए। यह ध्यान रखें कि लेख के मुख्य भाग वाला हर पैरा अपने बाद वाले से जाकर मिलता हो।

- आपके निष्कर्ष का लक्ष्य, साधारण शब्दों में, इस प्रश्न का उत्तर देना है, “तो क्या?” ध्यान रखें कि पाठक आख़िरकार महसूस करे कि उसे कुछ प्राप्त हुआ है।
- कई कारणों से अच्छा नुस्खा तो यह है कि, निष्कर्ष को भूमिका के पहले लिख लिया जाये। पहली बात तो यह है कि जब प्रमाण आपके दिमाग में ताज़ा हों तो निष्कर्ष लिखना ज्यादा आसान होता है। उससे भी बड़ी बात यह है, सलाह दी जाती है कि आप निष्कर्ष में अपने सबसे चुनिन्दा शब्द और भाषा का मजबूती से इस्तेमाल करें और फिर उन्हीं विचारों को भिन्न शब्दों में अपेक्षाकृत कम वेग के साथ भूमिका में रख दें, न कि इसका उल्टा करें; यह पाठकों पर ज्यादा स्थायी प्रभाव छोड़ेगा।

- MLA फॉर्मेट को विशेष रूप से साहित्यिक शोध-पत्रों के लिए इस्तेमाल किया जाता है और इसमें ‘उद्धृत सामग्री’ की एक सूची अंत में जोड़नी होती है, इस विधि में अंतरपाठीय उद्धरण प्रयोग किये जाते हैं।
- APA फॉर्मेट का इस्तेमाल सामाजिक विज्ञान के क्षेत्र में शोधपत्रों के लिए शोधकर्त्ताओं द्वारा किया जाता है, और इसमें भी अंतरपाठीय उद्धरण देने होते हैं। इसमें निबंध का अंत “सन्दर्भ” पृष्ठ के साथ होता है, और इसमें मुख्य भाग के पैराग्राफों के बीच में अनुच्छेद शीर्षक का प्रयोग भी किया जा सकता है।
- शिकागो फोर्मटिंग को प्रमुखतः ऐतिहासिक शोधपत्रों के लिए इस्तेमाल किया जाता है और इसमें अंतरपाठीय उद्धरण के स्थान पर पृष्ठ के नीचे फुटनोट का प्रयोग होता है और साथ में एक ‘उद्धृत सामग्री’ और सन्दर्भों का पृष्ठ जुड़ता है। [७] X रिसर्च सोर्स

- अपने पेपर का सम्पादन यदि खुद आपने किया है, तो उस पर वापस आने से पहले कम से कम तीन दिन प्रतीक्षा कीजिए। अध्ययन दिखाते हैं कि, लेख समाप्त करने के बाद भी दो-तीन दिन तक यह आपके जेहन में ताज़ा बना रहता है, और इसलिए ज्यादा संभावना यह रहेगी कि आम तौर पर आप जिन बुनियादी त्रुटियों को पकड़ पाते, उन्हें भी अपनी सरसरी नज़र में नजरअंदाज कर जाएँगे।
- दूसरों के द्वारा संपादन को महज इसलिए नजरअंदाज न करें कि उनसे आपका काम बढ़ जाएगा। अगर वे आपके पेपर के किसी अंश को दोबारा लिखे जाने की सलाह दे रहे हों तो उनके इस आग्रह का संभवतया उचित कारण है। अपने पेपर के सघन सम्पादन पर समय दीजिए। [८] X रिसर्च सोर्स

- रिसर्च के दौरान महत्वपूर्ण थीम, प्रश्नों और केन्द्रीय मुद्दों को ढूँढ़ें।
- यह समझने की कोशिश करें कि, आप वास्तव में निर्दिष्ट रूप में किस चीज़ का अन्वेषण करना चाहते हैं, इसके बजाय कि पेपर में ढेर सारे व्यापक विचारों को ठूस दिया जाए।
- ऐसा करने के लिये अंतिम क्षण तक प्रतीक्षा मत कीजिए।
- अपने असाइंमेंट को समयानुसार पूरा करना सुनिश्चित कीजिए।
संबंधित लेखों

- ↑ http://www.infoplease.com/homework/t3sourcesofinfo.html
- ↑ http://www.ebscohost.com/academic
- ↑ http://owl.english.purdue.edu/owl/resource/552/03/
- ↑ http://owl.english.purdue.edu/owl/resource/544/02/
- ↑ http://www.indiana.edu/~wts/pamphlets/thesis_statement.shtml
- ↑ http://libguides.jcu.edu.au/content.php?pid=83923&sid=3619280
- ↑ http://writing.yalecollege.yale.edu/why-are-there-different-citation-styles
- ↑ http://professionalonlineediting.com/how-to-edit-your-essay-or-research-paper-fast.asp
विकीहाउ के बारे में

- प्रिंट करें
यह लेख ने कैसे आपकी मदद की?
सम्बंधित लेख.

हमें फॉलो करें

- हमें कॉन्टैक्ट करें
- यूज़ करने की शर्तें (अंग्रेजी में)
- Do Not Sell or Share My Info
- Not Selling Info
Hindi Text Classification: A Review
Ieee account.
- Change Username/Password
- Update Address
Purchase Details
- Payment Options
- Order History
- View Purchased Documents
Profile Information
- Communications Preferences
- Profession and Education
- Technical Interests
- US & Canada: +1 800 678 4333
- Worldwide: +1 732 981 0060
- Contact & Support
- About IEEE Xplore
- Accessibility
- Terms of Use
- Nondiscrimination Policy
- Privacy & Opting Out of Cookies
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2023 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.
Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser .
Enter the email address you signed up with and we'll email you a reset link.
- We're Hiring!
- Help Center

A systematic Literature Review in Hindi Language

India has officially 22 recognized languages where Hindi is the most commonly spoken language .There is still a lot more work to be done towards developing applications and tools in our National language .Therefore , there is a need to gather and integrate all the research work done in Hindi text to provide the compact understanding for researchers .
Related Papers
Vishal Goyal

Sreelekha S
Ahmed Abdelali
Gael Lejeune
Abstract Processing content for security becomes more and more important since every local danger can have global consequences. Being able to collect and analyse information in different languages is a great issue. This paper addresses multilingual solutions for analysis of press articles for epidemiological surveillance. The system described here relies on pragmatics and stylistics, giving up “bag of sentences” approach in favour of discourse repetition patterns.
Ali Daud Associate Professor , Da Ch
Extensive work has been done on different activities of natural language processing for Western languages as compared to its Eastern counterparts particularly South Asian Languages. Western languages are termed as resource-rich languages. Core linguistic resources e.g. corpora, WordNet, dictionaries, gazetteers and associated tools being developed for Western languages are customarily available. Most South Asian Languages are low resource languages e.g. Urdu is a South Asian Language, which is among the widely spoken languages of sub-continent. Due to resources scarcity not enough work has been conducted for Urdu. The core objective of this paper is to present a survey regarding different linguistic resources that exist for Urdu language processing, to highlight different tasks in Urdu language processing and to discuss different state of the art available techniques. Conclusively, this paper attempts to describe in detail the recent increase in interest and progress made in Urdu language processing research. Initially, the available datasets for Urdu language are discussed. Characteristic, resource sharing between Hindi and Urdu, orthography, and morphology of Urdu language are provided. The aspects of the pre-processing activities such as stop words removal, Diacritics removal, Normalization and Stemming are illustrated. A review of state of the art research for the tasks such as Tokenization, Sentence Boundary Detection, Part of Speech tagging, Named Entity Recognition, Parsing and development of WordNet tasks are discussed. In addition, impact of ULP on application areas, such as, Information Retrieval, Classification and plagiarism detection is investigated. Finally, open issues and future directions for this new and dynamic area of research are provided. The goal of this paper is to organize the ULP work in a way that it can provide a platform for ULP research activities in future. Keywords Urdu language processing (ULP) · Datasets · Characteristics · Natural language processing (NLP) · Part-of-speech (POS) · Named entity recognition (NER) · Sentence boundary detection (SBD)
Proceedings of the ACL-HLT 2011 System Demonstrations}
Gurpreet Singh Lehal
Budditha Hettige
Rada Mihalcea
Abstract We introduce a new publicly available tool that implements efficient indexing and retrieval of large N-gram datasets, such as the Web1T 5-gram corpus. Our tool indexes the entire Web1T dataset with an index size of only 100 MB and performs a retrieval of any N-gram with a single disk access. With an increased index size of 420 MB and duplicate data, it also allows users to issue wild card queries provided that the wild cards in the query are contiguous.
Abstract Large lexical resources, such as corpora and databases of Web ngrams, are a rich source of pre-fabricated phrases that can be reused in many different contexts. However, one must be careful in how these resources are used, and noted writers such as George Orwell have argued that the use of canned phrases encourages sloppy thinking and results in poor communication.
Natural language processing (NLP) has recently gained much attention for representing and analysing human language computationally. It has spread its applications in various fields such as machine translation, email spam detection, information extraction, summarization, medical, and question answering etc. The paper distinguishes four phases by discussing different levels of NLP and components of Natural Language Generation (NLG) followed by presenting the history and evolution of NLP, state of the art presenting the various applications of NLP and current trends and challenges.
RELATED PAPERS
TheScientificWorldJournal
Ravi Narayan
International Journal of Advance Research in Computer Science and Management Studies [IJARCSMS] ijarcsms.com
grigori sidorov
Proceedings of the …
Giorgio Maria Di Nunzio , Gareth Jones
Masashi Inoue
Natalia Konstantinova
SUGANDHA NANDEDKAR
Amba Kulkarni
Journal of Computer Science IJCSIS
Copenhagen Studies in Language 41
Michael Carl , Michael Zock
Dr. Ramesh M Kagalkar , IJCSE Editor
Sudeshna Sarkar
Rajendran Sankaravelayuthan
simple'04
Joy Mustafi
Rajendran S
Johannes Leveling
Mohammad Firoj Mithani
SAKTHI VEL S
Coling 2010: Posters}
Pascal Denis
Dr Mahmoud El-Haj
Prof. Niladri Sekhar Dash
eSAT Journals
7th Language Resources and Evaluation …
Niraj Aswani
ACM SIGIR Forum, 41(2):72-76, 2007. ISSN 0163-5840.
Jesus Vilares
Proceedings of SLTC 2012. (The Fourth Swedish Language Technology Conference), pp. 10-11. Lund, October 2012.
Ben Lyngfelt
Genres on the Web
Marina Santini
Dr Mahmoud El-Haj , Udo Kruschwitz
Proc. of ACM SIGIR 2007 Workshop on Improving Non-English Web Searching (iNEWS07), Amsterdam, The Netherlands, 2007. ISBN 978-84-690-6978-3 (78 pp.)
Harald Hammarström
Language in India www.languageinindia.com ISSN 1930-2940 Vol. 19:5
Leandro Krug Wives
Proceedings of the 2nd Swedish language technology …
Advances in Natural Language Processing and …
Adrian Iftene
Methods for the automatic acquisition of Language Resources and their evaluation methods
Eszter Simon , András Serény
dcs.shef.ac.uk
- We're Hiring!
- Help Center
- Find new research papers in:
- Health Sciences
- Earth Sciences
- Cognitive Science
- Mathematics
- Computer Science
- Academia ©2023
- Original Paper
- Published: 17 June 2020
Machine Translation Systems for Indian Languages: Review of Modelling Techniques, Challenges, Open Issues and Future Research Directions
- Muskaan Singh 1 ,
- Ravinder Kumar 1 &
- Inderveer Chana 2
Archives of Computational Methods in Engineering volume 28 , pages 2165–2193 ( 2021 ) Cite this article
688 Accesses
6 Citations
Metrics details
With the advancement in computer language technology in a multilingual country like India, numerous linguistics require technology for translation. It aids in research for ancient languages like Sanskrit, Tamil, Telugu, Malayalam to be available for society. Devising these languages require natural language processing, and machine translation is one of its essential areas. It plays a significant role in breaking the language barrier and facilitating inter-lingual communication by translating one language to another. As, with the advent of information technology, many documents and web pages are available in local languages. There is a tremendous need to establish proper communication amongst the people belonging to discrete backgrounds and cultures. This paper contributes in two ways: firstly, the review of different modelling techniques is performed. It serves the developers with resources required for modelling different techniques such as corpus, domains, toolkits, techniques, models, features and their evaluation measures. Secondly, a comparison of research work on different Indic language pairs based on their modelling techniques have been performed. It influences the work on Sanskrit language to be minimal despite holding an ancient scientific and comprehensive literature of India. It also contributes to linguistic and technical challenges for processing Sanskrit language, open issues, and future research directions in this field.
This is a preview of subscription content, access via your institution .
Access options
Buy single article.
Instant access to the full article PDF.
Price includes VAT (Russian Federation)
Rent this article via DeepDyve.

Trujillo A (2012) Translation engines: techniques for machine translation. Springer, Berlin
MATH Google Scholar
Bharati A, Chaitanya V, Sangal R, Ramakrishnamacharyulu K (1995) Natural language processing: a Paninian perspective. Prentice-Hall, New Delhi
Google Scholar
Chowdhury GG (2003) Natural language processing. Annu Rev Inf Sci Technol 37(1):51–89
Drummer A (1996) Literature review: MT. MT for South African Languages. http://people.cs.uct.ac.za/~bsharwood/downloads.html . Retrieved 28 May 2019
Hutchins J (2005) Current commercial machine translation systems and computer-based translation tools: system types and their uses. Int J Transl 17(1–2):5–38
MathSciNet Google Scholar
Hutchins J (2009) Multiple uses of machine translation and computerised translation tools. Mach Transl 13–20
Bharati A, Kulkarni A (2008) Information coding in a language: some insights from pan.inian grammar
Briggs R (1985) Knowledge representation in Sanskrit and artificial intelligence. AI Mag 6(1):32
Kulkarni A, Das M (2012) Discourse analysis of Sanskrit texts. In: Proceedings of the workshop on advances in discourse analysis and its computational aspects, pp 1–16
Mane D, Hirve A (2013) Study of various approaches in machine translation for Sanskrit language. Int J Adv Res Technol 2(4):383–387
Raulji JK, Saini JR (2016) Sanskrit machine translation systems: a comparative analysis. Int J Comput Appl 136(1):1–4
Antony P (2013) Machine translation approaches and survey for Indian languages. Int J Comput Linguist Chin Lang Process 18(1):13–20
Garje G, Kharate G (2013) Survey of machine translation systems in India. Int J Nat Lang Comput 2(4):47–65
Saini S, Sahula V (2015) A survey of machine translation techniques and systems for Indian languages. In: 2015 IEEE international conference on computational intelligence & communication technology. IEEE, pp 676–681
Naskar S, Bandyopadhyay S (2005) Use of machine translation in India: current status. AAMT J 36:25–31
Dwivedi SK, Sukhadeve PP (2010) Machine translation system in Indian perspectives. J Comput Sci 6(10):1111
Hutchins WJ (2001) Machine translation over fifty years. Histoire epistémologie langage 23(1):7–31
Hutchins WJ, Somers HL (1992) An introduction to machine translation, vol 362. Academic Press, London
Noone G (2003) Machine translation a transfer approach. Computer Science, Linguistics and a Language (CSLL) Department, University of Dublin, Trinity College, Final Report
Dorr BJ, Hovy EH, Levin LS (2004) Machine translation: interlingual methods. In: Natural language processing and machine translation encyclopedia of language and linguistics, 2nd edn. Elsevier, Amsterdam
Kavirajan B, Kumar MA, Soman K, Rajendran S, Vaithehi S (2017) Improving the rule based machine translation system using sentence simplification (English to Tamil). In: 2017 international conference on advances in computing. Communications and informatics (ICACCI). IEEE, pp 957–963
Rana M, Atique M (2016) Use of fuzzy tool for example based machine translation. Procedia Comput Sci 79:199–206
Darbari H, Kumar A, Dasgupta A, Mishra SK (2010) Complexity of language in Rajya Sabha domain and MANTRA approach. In: Proceedings of ICON-2010: 8th international conference on natural language processing
Garje G, Kharate G, Kulkarni H (2014) Transmuter: an approach to rule-based English to Marathi machine translation. Int J Comput Appl 98(21):33–37
Dubey P (2014) Need for Hindi–Dogri machine translation system. In: 2014 international conference on computing for sustainable global development (INDIACom). IEEE, pp 136–140
Basavaraddi MCCS, Shashirekha DH (2014) A typical machine translation system for English to Kannada. Int J Sci Eng Res 5(4). ISSN 2229-5518
Adapanawar A, Garje A, Thakare P, Gundawar P, Kulkarni P (2013) Rule based English to Marathi translation of assertive sentence. Int J Sci Eng Res 4(5):516–518
Pishartoy D, Priya SW (2012) Extending capabilities of English to Marathi machine translator. I. JCSI Int J Comput Sci Issues 9(3):375
Nair LR, Peter D, Ravindran RP (2012) Design and development of a Malayalam to English translator—a transfer based approach. Int J Comput Linguist (IJCL) 3(1):1–11
Batra KK, Lehal G (2010) Rule based machine translation of noun phrases from Punjabi to English. Int J Comput Sci Issues (IJCSI) 7(5):409
Rajan R, Sivan R, Ravindran R, Soman K (2009) Rule based machine translation from English to Malayalam. In: International conference on advances in computing, control, & telecommunication technologies, 2009, ACT’09. IEEE, pp 439–441
Sinha RMK, Mahesh K (2009) Developing English–Urdu machine translation via Hindi. In: Third workshop on computational approaches to Arabic-script-based languages, Citeseer
Sinha R, Jain A (2003) AnglaHindi: an English to Hindi machine-aided translation system. MT Summit IX, New Orleans, USA pp 494–497
Dave S, Parikh J, Bhattacharyya P (2001) Interlingua-based English–Hindi machine translation and language divergence. Mach Transl 16(4):251–304
Kumar MA, Premjith B, Shivkaran S, Kavirajan B, Rajendran A, Soman K (2017) Overview of the shared task on machine translation in Indian languages (MTIL-2017). J Intell Syst 28:455–464
Adak C (2014) A bilingual machine translation system: English & Bengali. In: 2014 first international conference on automation, control, energy and systems (ACES). IEEE, pp 1–4
Weaver W (1955) Translation. Mach Transl Lang 14:15–23
Brown PF, Pietra VJD, Pietra SAD, Mercer RL (1993) The mathematics of statistical machine translation: parameter estimation. Comput Linguist 19(2):263–311
Vogel S, Ney H, Tillmann C (1996) HMM-based word alignment in statistical translation. In: Proceedings of the 16th conference on computational linguistics, vol 2. Association for Computational Linguistics, pp 836–841
Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Linguist 29(1):19–51
Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the 2003 conference of the North American chapter of the association for computational linguistics on human language technology, vol 1. Association for Computational Linguistics, pp 48–54
Yamada K, Knight K (2001) A syntax-based statistical translation model. In: Proceedings of the 39th annual meeting of the Association for Computational Linguistics
Charniak E, Knight K, Yamada K (2003) Syntax-based language models for statistical machine translation. In: Proceedings of MT Summit IX, pp 40–46
Chiang D (2005) A hierarchical phrase-based model for statistical machine translation. In: Proceedings of the 43rd annual meeting on Association for Computational Linguistics. Association for Computational Linguistics, pp 263–270
Subalalitha BSB Aarthi Venkataraman (2018) Statistical machine translation system from English–Hindi. Int J Pure Appl Math 118(20):1649–1655
Jindal S, Goyal V, Bhullar JS (2018) English to Punjabi statistical machine translation using moses (corpus based). J Stat Manag Syst 21(4):553–560
Patel RN, Pimpale PB, Sasikumar M (2018) Machine translation in Indian languages: challenges and resolution. J Intell Syst. https://doi.org/10.1515/jisys-2018-0014
Article Google Scholar
Khan NJ, Anwar W, Durrani N (2017) Machine translation approaches and survey for Indian languages. arXiv preprint arXiv:170104290
Patel RN, Pimpale PB, Sasikumar M (2016) Statistical machine translation for Indian languages: mission Hindi. arXiv preprint arXiv:161007418
Patel RN, Pimpale PB (2016) Statistical machine translation for Indian languages: mission Hindi 2. arXiv:161007418v1
Das P, Baruah KK (2014) Assamese to English statistical machine translation integrated with a transliteration module. Int J Comput Appl 100(5):401–406
Ali A, Siddiq S, Malik MK (2010) Development of parallel corpus and English to Urdu statistical machine translation. Int J Eng Technol IJET-IJENS 10:31–33
Khan N, Anwar MW, Bajwa UI, Durrani N (2013) English to Urdu hierarchical phrase-based statistical machine translation. In: Proceedings of the 4th workshop on South and Southeast Asian natural language processing, pp 72–76
Ali A, Hussain A, Malik MK (2013) Model for English–Urdu statistical machine translation. World Appl Sci 24:1362–1367
Kumar P, Kumar V (2013) Statistical machine translation based Punjabi to English transliteration system for proper nouns. Int J Appl Innov Eng Manag 2(8):318–321
Anwar MM, Anwar MZ, Bhuiyan MAA (2009) Syntax analysis and machine translation of Bangla sentences. Int J Comput Sci Netw Secur 9(8):317–326
Udupa R, Faruquie TA (2004) An English–Hindi statistical machine translation system. In: International conference on natural language processing. Springer, pp 254–262
Cherry C (2008) Cohesive phrase-based decoding for statistical machine translation. In: Proceedings of ACL-08: HLT, pp 72–80
Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112
Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder–decoder for statistical machine translation. arXiv preprint arXiv:14061078
Luong MT, Le QV, Sutskever I, Vinyals O, Kaiser L (2015) Multi-task sequence to sequence learning. arXiv preprint arXiv:151106114
Jean S, Firat O, Cho K, Memisevic R, Bengio Y (2015) Montreal neural machine translation systems for WMT’15. In: Proceedings of the tenth workshop on statistical machine translation, pp 134–140
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:14090473
Kalchbrenner N, Blunsom P (2013) Recurrent continuous translation models. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1700–1709
Luong MT, Sutskever I, Le QV, Vinyals O, Zaremba W (2014) Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:14108206
Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine translation: encoder–decoder approaches. arXiv preprint arXiv:14091259
Chorowski JK, Bahdanau D, Serdyuk D, Cho K, Bengio Y (2015) Attention-based models for speech recognition. In: Advances in neural information processing systems. MIT Press, pp 577–585
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:150804025
Meng F, Lu Z, Wang M, Li H, Jiang W, Liu Q (2015) Encoding source language with convolutional neural network for machine translation. arXiv preprint arXiv:150301838
Kaiser Ł, Bengio S (2016) Can active memory replace attention? In: Advances in neural information processing systems. MIT Press, pp 3781–3789
Kalchbrenner N, Espeholt L, Simonyan K, Oord Avd, Graves A, Kavukcuoglu K (2016) Neural machine translation in linear time. arXiv preprint arXiv:161010099
Kaiser L, Gomez AN, Chollet F (2017) Depthwise separable convolutions for neural machine translation. arXiv preprint arXiv:170603059
Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: a generative model for raw audio. arXiv preprint arXiv:160903499
Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN (2017) Convolutional sequence to sequence learning. Corr arXiv:1705.03122
Jha S, Sudhakar A, Singh AK (2018) Neural machine translation based word transduction mechanisms for low-resource languages. arXiv preprint arXiv:181108816
Choudhary H, Pathak AK, Saha RR, Kumaraguru P (2018) Neural machine translation for English–Tamil. In: Proceedings of the third conference on machine translation: shared task papers, pp 770–775
Pathak A, Pakray P (2017) Neural machine translation for Indian languages. J Intell Syst 28:465–477
Ramesh SH, Sankaranarayanan KP (2018) Neural machine translation for low resource languages using bilingual lexicon induced from comparable corpora. In: Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: student research workshop, pp 112–119
Singh S, Anand Kumar M, Soman K (2018) Attention based English to Punjabi neural machine translation. J Intell Fuzzy Syst 34(3):1551–1559
Mistry J, Verma AA, Bhattacharyya P (2017) Literature survey: study of neural machine translation. www.cfiltiitbacin/resources/surveys/ajay-jigar-nmt-survey-jun17pdf
Revanuru K, Turlapaty K, Rao S (2017) Neural machine translation of Indian languages. In: Proceedings of the 10th annual ACM India compute conference on ZZZ. ACM, pp 11–20
Tennage P, Sandaruwan P, Thilakarathne M, Herath A, Ranathunga S, Jayasena S, Dias G (2017) Neural machine translation for Sinhala and Tamil languages. In: 2017 international conference on Asian language processing (IALP). IEEE, pp 189–192
Agrawal R, Sharma DM (2017) Building an effective mt system for English–Hindi using RNN’s. Int J Artif Intell Appl (IJAIA) 8(5):602–609
Das A, Yerra P, Kumar K, Sarkar S (2016) A study of attention-based neural machine translation model on Indian languages. In: Proceedings of the 6th workshop on South and Southeast Asian natural language processing (WSSANLP2016), pp 163–172
Habash N, Dorr B, Monz C (2009) Symbolic-to-statistical hybridization: extending generation-heavy machine translation. Mach Transl 23(1):23–63
Sánchez-Martínez F, Forcada ML, Way A et al (2009) Hybrid rule-based-example-based MT: feeding apertium with sub-sentential translation units. In: Proceedings of the 3rd workshop on example based machine translation, pp 11–18
Antonova A, Misyurev A (2014) Improving the precision of automatically constructed human-oriented translation dictionaries. In: Proceedings of the 3rd workshop on hybrid approaches to machine translation (HyTra), pp 58–66
Göhring A (2014) Building a Spanish–German dictionary for hybrid MT. In: Proceedings of the 3rd workshop on hybrid approaches to machine translation (HyTra), pp 30–35
Sánchez-Martínez F, Forcada ML (2009) Inferring shallow-transfer machine translation rules from small parallel corpora. J Artif Intell Res 34:605–635
Tyers FM, Sánchez-Martínez F, Forcada ML et al (2012) Flexible finite-state lexical selection for rule-based machine translation. In: Proceedings of the 16th EAMT conference, Trento, Italy
Rudnick A, Gasser M (2013) Lexical selection for hybrid Mt with sequence labeling. In: Proceedings of the second workshop on hybrid approaches to translation, pp 102–108
Ruiz Costa-Jussà M, Centelles J (2015) Description of the Chinese-to-Spanish rule-based machine translation system developed with a hybrid combination of human annotation and statistical techniques. ACM Trans Asian Lang Inf Process 15(1):1–13
Federmann C, Hunsicker S (2011) Stochastic parse tree selection for an existing RBMT system. In: Proceedings of the sixth workshop on statistical machine translation. Association for Computational Linguistics, pp 351–357
Dove C, Loskutova O, de la Fuente R (2012) What’s your pick: RBMT, SMT or hybrid. In: Proceedings of the tenth conference of the Association for Machine Translation in the Americas (AMTA 2012), San Diego, CA
Hunsicker S, Yu C, Federmann C (2012) Machine learning for hybrid machine translation. In: Proceedings of the seventh workshop on statistical machine translation. Association for Computational Linguistics, pp 312–316
Labaka G, España-Bonet C, Màrquez L, Sarasola K (2014) A hybrid machine translation architecture guided by syntax. Mach Transl 28(2):91–125
Crego J (2014) Systran RBMT engine: hybridization experiments. In: 3rd workshop on hybrid approaches to machine translation (HyTra), Gothenburg, Sweden
Eberle K (2014) Hybrid strategies for better products and shorter time-to-market. In: Proceedings of the 3rd workshop on hybrid approaches to machine translation (HyTra), p 97
Simard M, Ueffing N, Isabelle P, Kuhn R (2007) Rule-based translation with statistical phrase-based post-editing. In: Proceedings of the second workshop on statistical machine translation. Association for Computational Linguistics, pp 203–206
Lagarda AL, Alabau V, Casacuberta F, Silva R, Díaz-de Liaño E (2009) Statistical post-editing of a rule-based machine translation system. In: Proceedings of human language technologies: the 2009 annual conference of the North American chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, Association for Computational Linguistics, pp 217–220
Suzuki H (2011) Automatic post-editing based on SMT and its selective application by sentence-level automatic quality evaluation. Language 1:59–429
Béchara H, Rubino R, He Y, Ma Y, van Genabith J (2012) An evaluation of statistical post-editing systems applied to RBMT and SMT systems. In: Proceedings of COLING 2012, pp 215–230
Xia F, McCord M (2004) Improving a statistical MT system with automatically learned rewrite patterns. In: Proceedings of the 20th international conference on computational linguistics. Association for Computational Linguistics, p 508
Collins M, Koehn P, Kučerová I (2005) Clause restructuring for statistical machine translation. In: Proceedings of the 43rd annual meeting on association for computational linguistics. Association for Computational Linguistics, pp 531–540
Wang C, Collins M, Koehn P (2007) Chinese syntactic reordering for statistical machine translation. In: Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL)
Patel RN, Gupta R, Pimpale PB et al (2016) Reordering rules for English–Hindi SMT. arXiv preprint arXiv:161007420
Farrús M, Costa-Jussa MR, Marino JB, Poch M, Hernández A, Henríquez C, Fonollosa JA (2011) Overcoming statistical machine translation limitations: error analysis and proposed solutions for the Catalan–Spanish language pair. Lang Resour Eval 45(2):181–208
Formiga Fanals L, Hernández Huerta A, Mariño Acebal JB, Monte Moreno E (2012) Improving English to Spanish out-of-domain translations by morphology generalization and generation. In: Proceedings of the monolingual machine translation-2012 workshop, pp 6–16
Carl M, Pease C, Iomdin LL, Streiter O (2000) Towards a dynamic linkage of example-based and rule-based machine translation. Mach Transl 15(3):223–257
Hua W, Haifeng W (2004) Improving statistical word alignment with a rule-based machine translation system. In: Proceedings of the 20th international conference on computational linguistics. Association for Computational Linguistics, p 29
Okuma H, Yamamoto H, Sumita E (2008) Introducing a translation dictionary into phrase-based SMT. IEICE Trans Inf Syst 91(7):2051–2057
Eisele A, Federmann C, Saint-Amand H, Jellinghaus M, Herrmann T, Chen Y (2008) Using Moses to integrate multiple rule-based machine translation engines into a hybrid system. In: Proceedings of the third workshop on statistical machine translation, pp 179–182
Sánchez-Cartagena VM, Sánchez-Martínez F, Pérez-Ortiz JA et al (2011) Integrating shallow-transfer rules into phrase-based statistical machine translation. In: Machine translation summit. pp 562–569
Chen Y, Eisele A (2010) Integrating a rule-based with a hierarchical translation system. In: LREC
Ahsan A, Kolachina P, Kolachina S, Sharma DM, Sangal R (2010) Coupling statistical machine translation with rule-based transfer and generation. In: Proceedings of the 9th conference of the association for machine translation in the Americas
Enache R, España Bonet C, Ranta A, Màrquez Villodre L (2012) A hybrid system for patent translation. In: Proceedings of the 16th annual conference of the European Association for Machine Translation: EAMT 2012: Trento, Italy, May 28th–30th 2012, pp 269–278
Och FJ, Ney H (2004) The alignment template approach to statistical machine translation. Comput Linguist 30(4):417–449
Groves D, Way A (2005) Hybrid data-driven models of machine translation. Mach Transl 19(3–4):301–323
Wang K, Zong C, Su KY (2013) Integrating translation memory into phrase-based machine translation during decoding. In: Proceedings of the 51st annual meeting of the Association for Computational Linguistics (vol 1: Long Papers), vol 1, pp 11–21
Carbonell JG, Klein S, Miller D, Steinbaum M, Grassiany T, Frey J (2006) Context-based machine translation. In: 7th conference of the Association for Machine Translation in the Americas
Vandeghinste V, Schuurman I, Carl M, Markantonatou S, Badia T (2006) METIS-II: machine translation for low resource languages. In: LREC, pp 1284–1289
Ruiz Costa-Jussà M, Rodríguez Fonollosa JA (2011) Using linear interpolation and weighted reordering hypotheses in the Moses system. In: Seventh conference on international language resources and evaluation, pp 1712–1718
Tambouratzis G, Sofianopoulos S, Vassiliou M (2013) Language-independent hybrid MT with present. In: Proceedings of the second workshop on hybrid approaches to translation, pp 123–130
Dhariya O, Malviya S, Tiwary US (2017) A hybrid approach for Hindi–English machine translation. In: 2017 international conference on information networking (ICOIN). IEEE, pp 389–394
Salunkhe P, Kadam AD, Joshi S, Patil S, Thakore D, Jadhav S (2016) Hybrid machine translation for English to Marathi: a research evaluation in machine translation: (hybrid translator). In: International conference on electrical, electronics, and optimization techniques (ICEEOT). IEEE, pp 924–931
Nithya B, Joseph S (2013) A hybrid approach to English to Malayalam machine translation. Int J Comput Appl 81(8):11–15
Kaur H, Laxmi DV (2013) A web based English to Punjabi MT system for news headlines. Int J Adv Res Comput Sci Softw Eng 3(6):1092–1094
Dhore M, Dixit S, Karande J (2011) Web page interface localisation in Devanagari for commercial interactive applications by enhancing basic functionality of apache server. Int J Comput Appl 18(4):6–10
Chatterji S, Sonare P, Sarkar S, Basu A (2011) Lattice based lexical transfer in Bengali Hindi machine translation framework. In: Proceedings of ICON-2011: 9th international conference on natural language processing
Shahnawaz Mishra R (2015) An English to Urdu translation model based on CBR, ANN and translation rules. Int J Adv Intell Paradig 7(1):1–23
Chatterji S, Roy D, Sarkar S, Basu A (2009) A hybrid approach for Bengali to Hindi machine translation. In: 7th international conference on natural language processing, pp 83–91
Dorr BJ (1994) Machine translation divergences: a formal description and proposed solution. Comput Linguist 20(4):597–633
Habash N, Dorr B (2002) Handling translation divergences: combining statistical and symbolic techniques in generation-heavy machine translation. In: Conference of the association for machine translation in the Americas. Springer, pp 84–93
Goyal P, Sinha RMK (2009) Translation divergence in English–Sanskrit–Hindi language pairs. In: International Sanskrit computational linguistics symposium. Springer, pp 134–143
Mishra V, Mishra R (2008) Study of example based English to Sanskrit machine translation. Polibits 37:43–54
Shukla P, Shukl D, Kulkarni A (2010) Vibhakti divergence between Sanskrit and Hindi. In: International Sanskrit computational linguistics symposium. Springer, pp 198–208
Luong MT, Manning CD (2015) Stanford neural machine translation systems for spoken language domains. In: Proceedings of the international workshop on spoken language translation, pp 76–79
Farajian MA, Turchi M, Negri M, Bertoldi N, Federico M (2017) Neural vs. phrase-based machine translation in a multi-domain scenario. In: Proceedings of the 15th conference of the European chapter of the association for computational linguistics: volume 2, short papers, vol 2, pp 280–284
Turchi M, De Bie T, Cristianini N (2008) Learning performance of a machine translation system: a statistical and computational analysis. In: Proceedings of the third workshop on statistical machine translation. Association for Computational Linguistics, pp 35–43
Irvine A, Callison-Burch C (2013) Combining bilingual and comparable corpora for low resource machine translation. In: Proceedings of the eighth workshop on statistical machine translation, pp 262–270
Chen B, Kuhn R, Foster G, Cherry C, Huang F (2016) Bilingual methods for adaptive training data selection for machine translation. In: Proceedings of AMTA, pp 93–103
Arthur P, Neubig G, Nakamura S (2016) Incorporating discrete translation lexicons into neural machine translation. arXiv preprint arXiv:160602006
Tu Z, Lu Z, Liu Y, Liu X, Li H (2016) Modeling coverage for neural machine translation. arXiv preprint arXiv:160104811
Chen W, Matusov E, Khadivi S, Peter JT (2016) Guided alignment training for topic-aware neural machine translation. arXiv preprint arXiv:160701628
Liu L, Utiyama M, Finch A, Sumita E (2016) Neural machine translation with supervised attention. arXiv preprint arXiv:160904186
Liu Y, Liu Q, Lin S (2006) Tree-to-string alignment template for statistical machine translation. In: Proceedings of the 21st international conference on computational linguistics and the 44th annual meeting of the association for computational linguistics. Association for Computational Linguistics, pp 609–616
Och FJ, Ney H (2000) A comparison of alignment models for statistical machine translation. In: COLING 2000, the 18th international conference on computational linguistics, vol 2
Tian L, Wong F, Chao S (2011) Word alignment using Giza++ on windows. Mach Transl 2:1762–1765
Deng Y, Byrne W (2006) MTTK: an alignment toolkit for statistical machine translation. In: Proceedings of the 2006 conference of the North American chapter of the association for computational linguistics on human language technology: companion volume: demonstrations. Association for Computational Linguistics, pp 265–268
Ortiz-Martínez D, García-Varea I, Casacuberta F (2005) THOT: a toolkit to train phrase-based statistical translation models. In: Tenth machine translation, Citeseer
Koehn P, Knowles R (2017) Six challenges for neural machine translation. arXiv preprint arXiv:170603872
Koehn P (2009) Statistical machine translation. Cambridge University Press, Cambridge
Okpor M (2014) Machine translation approaches: issues and challenges. Int J Comput Sci Issues (IJCSI) 11(5):159
Koehn P, Axelrod A, Mayne AB, Callison-Burch C, Osborne M, Talbot D, White M (2005) Edinburgh system description for the 2005 NIST MT evaluation. In: Proceedings of machine translation evaluation workshop 2005
Pingali P, Varma V (2006) Hindi and Telugu to English cross language information retrieval at CLEF 2006. In: CLEF (working notes)
Dhore M, Dixit S (2011) English to Devanagari translation for UI labels of commercial web based interactive applications. Int J Comput Appl 35(10):6–12
Godase A, Govilkar S (2015) A novel approach for rule based translation of English to Marathi. Adv Comput Intell Int J. https://doi.org/10.5121/acii.2015.2401
Savita Singla SB (2013) Hybrid approach for English to Punjabi translation system for news paper headlines in a specific domain. Int J Eng Res Technol 2:1792–1795
Sinhal RA, Gupta KO (2014) A pure EBMT approach for English to Hindi sentence translation system. Int J Mod Educ Comput Sci 6(7):1
Anju E, Manoj Kumar K (2014) Malayalam to English machine translation: an EBMT system. IOSR J Eng (IOSRJEN) 4(01):18–23
Census of India Government (2018) Census-2018, “language-census of India, states and union territories”. www.censusIndia.gov.in/2011Census/C-16_25062018_NEW.pdf . Accessed 29 May 2019
Bahadur P, Jain A, Chauhan D (2011) English to Sanskrit machine translation. In: Proceedings of the international conference & workshop on emerging trends in technology. ACM, pp 641–645
Jha GN, Mishra SK, Chandrashekar R (2005) Developing a Sanskrit analysis system for machine translation. In: Proceedings of national seminar on translation today: state and issues. Department of Linguistics, University of Kerala, Trivandrum, pp 23–25
Bharati A, Kulkarni A (2007) Sanskrit and computational linguistics. In: First international Sanskrit computational symposium. Department of Sanskrit Studies, University of Hyderabad
Huet G (2009) Formal structure of Sanskrit text: requirements analysis for a mechanical Sanskrit processor. In: Nath Jha G (ed) Sanskrit computational linguistics. Springer, Berlin, pp 162–199
Baindur M (2015) Nature in Indian philosophy and cultural traditions. Springer, Berlin
Bharati A, Chaitanya V, Sangal R (1994) Paninian framework and its application to Anusaraka. Sadhana 19(1):113–127
Nair RR, Devi LS (2011) Sanskrit informatics: informatics for Sanskrit studies and research. Centre for Informatics Research and Development, Trivandrum
Pandey RK, Jha GN (2016) Error analysis of Sahit—a statistical Sanskrit–Hindi translator. Procedia Comput Sci 96:495–501
Rathod SG (2014) Machine translation of natural language using different approaches. Int J Comput Appl 102(15):26–31
Shukla P, Shukla A (2014) English speech to Sanskrit speech (ESSS) using rule based translation. Int J Comput Appl 92(10):37–42
Bahadur P, Jain A, Chauhan D (2012) ETRANS—a complete framework for English to Sanskrit machine translation. In: International Journal of Advanced Computer Science and Applications (IJACSA) from international conference and workshop on emerging trends in technology, Citeseer
Jayan V, Sunil R, Kurambath GS, Kumar RR (2012) Divergence patterns in machine translation between Malayalam and English. In: Proceedings of the international conference on advances in computing, communications and informatics. ACM, pp 788–794
Aparna S (2005) Sanskrit to English translator. In: Language in India, vol 5. http://www.languageinindia.com/jan2005/aparnasanskritdissertation1.html . Accessed 29 May 2019
Lopez A, Post M (2013) Beyond bitext: five open problems in machine translation. In: Proceedings of the EMNLP workshop on twenty years of Bitext
Pathak KN, Jha GN (2011) Challenges in NP case-mapping in Sanskrit Hindi machine translation. In: Information systems for Indian languages. Springer, pp 289–293
Li X, Zhang J, Zong C (2016) Towards zero unknown word in neural machine translation. In: IJCAI, pp 2852–2858
Sennrich R, Haddow B, Birch A (2015) Improving neural machine translation models with monolingual data. arXiv preprint arXiv:151106709
Britz D, Goldie A, Luong MT, Le Q (2017) Massive exploration of neural machine translation architectures. arXiv preprint arXiv:170303906
Alkhouli T, Bretschner G, Peter JT, Hethnawi M, Guta A, Ney H (2016) Alignment-based neural machine translation. In: Proceedings of the first conference on machine translation: volume 1, research papers, vol 1, pp 54–65
Lamraoui F, Langlais P (2013) Yet another fast, robust and open source sentence aligner. Time to reconsider sentence alignment. In: XIV machine translation summit
Takebayashi Y, Chenhui C, Arase Y, Nagata M (2018) Word rewarding for adequate neural machine translation. In: International workshop on spoken language translation
Freitag M, Al-Onaizan Y (2016) Fast domain adaptation for neural machine translation. arXiv preprint arXiv:161206897
Sennrich R, Haddow B (2016) Linguistic input features improve neural machine translation. arXiv preprint arXiv:160602892
Madnani N, Ayan NF, Resnik P, Dorr BJ (2007) Using paraphrases for parameter tuning in statistical machine translation. In: Proceedings of the second workshop on statistical machine translation. Association for Computational Linguistics, pp 120–127
Goyal P, Huet G, Kulkarni A, Scharf P, Bunker R (2012) A distributed platform for Sanskrit processing. In: Proceedings of COLING 2012, pp 1011–1028
Download references
Author information
Authors and affiliations.
Language Engineering and Machine Learning Research Lab, Thapar Institute of Engineering and Technology (TIET), Patiala, Punjab, India
Muskaan Singh & Ravinder Kumar
CSED, Thapar Institute of Engineering and Technology (TIET), Patiala, Punjab, India
Inderveer Chana
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Muskaan Singh .
Ethics declarations
Conflict of interest.
The authors declare that they have no conflict of interest.
Additional information
Publisher's note.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions
Reprints and Permissions
About this article
Cite this article.
Singh, M., Kumar, R. & Chana, I. Machine Translation Systems for Indian Languages: Review of Modelling Techniques, Challenges, Open Issues and Future Research Directions. Arch Computat Methods Eng 28 , 2165–2193 (2021). https://doi.org/10.1007/s11831-020-09449-7
Download citation
Received : 23 October 2019
Accepted : 01 June 2020
Published : 17 June 2020
Issue Date : June 2021
DOI : https://doi.org/10.1007/s11831-020-09449-7
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Advertisement
- Find a journal
- Publish with us
We will keep fighting for all libraries - stand with us!
Internet Archive Audio
- This Just In
- Grateful Dead
- Old Time Radio
- 78 RPMs and Cylinder Recordings
- Audio Books & Poetry
- Computers, Technology and Science
- Music, Arts & Culture
- News & Public Affairs
- Spirituality & Religion
- Radio News Archive
- Flickr Commons
- Occupy Wall Street Flickr
- NASA Images
- Solar System Collection
- Ames Research Center
- All Software
- Old School Emulation
- MS-DOS Games
- Historical Software
- Classic PC Games
- Software Library
- Kodi Archive and Support File
- Vintage Software
- CD-ROM Software
- CD-ROM Software Library
- Software Sites
- Tucows Software Library
- Shareware CD-ROMs
- Software Capsules Compilation
- CD-ROM Images
- ZX Spectrum
- DOOM Level CD

- Smithsonian Libraries
- FEDLINK (US)
- Lincoln Collection
- American Libraries
- Canadian Libraries
- Universal Library
- Project Gutenberg
- Children's Library
- Biodiversity Heritage Library
- Books by Language
- Additional Collections
- Prelinger Archives
- Democracy Now!
- Occupy Wall Street
- TV NSA Clip Library
- Animation & Cartoons
- Arts & Music
- Computers & Technology
- Cultural & Academic Films
- Ephemeral Films
- Sports Videos
- Videogame Videos
- Youth Media
Search the history of over 835 billion web pages on the Internet.
Mobile Apps
- Wayback Machine (iOS)
- Wayback Machine (Android)
Browser Extensions
Archive-it subscription.
- Explore the Collections
- Build Collections
Save Page Now
Capture a web page as it appears now for use as a trusted citation in the future.
Please enter a valid web address
- Donate Donate icon An illustration of a heart shape
HINDI RESEARCH PAPER [ SOCRATES]
Bookreader item preview, share or embed this item, flag this item for.
- Graphic Violence
- Explicit Sexual Content
- Hate Speech
- Misinformation/Disinformation
- Marketing/Phishing/Advertising
- Misleading/Inaccurate/Missing Metadata

निर्गुण प्रेम मार्गी सूफ़ी संत कवि एवं उनका काव्य, ज्ञान मार्गी संत काव्य धारा एवं निर्गुण प्रेम मार्गी सूफ़ी संत काव्य धारा में साम्य एवं वैषम्य
Plus-circle add review comment reviews.
1,261 Views
DOWNLOAD OPTIONS
In collections.
Uploaded by SOCRATES JOURNAL on July 8, 2014
SIMILAR ITEMS (based on metadata)
We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.
- Essay Database >
- Essays Samples >
- Essay Types >
- Research Paper Example
Hindi Research Papers Samples For Students
6 samples of this type
If you're seeking a possible method to streamline writing a Research Paper about Hindi, WowEssays.com paper writing service just might be able to help you out.
For starters, you should skim our large database of free samples that cover most diverse Hindi Research Paper topics and showcase the best academic writing practices. Once you feel that you've studied the major principles of content structuring and drawn actionable insights from these expertly written Research Paper samples, composing your own academic work should go much easier.
However, you might still find yourself in a circumstance when even using top-notch Hindi Research Papers doesn't let you get the job done on time. In that case, you can get in touch with our experts and ask them to craft a unique Hindi paper according to your individual specifications. Buy college research paper or essay now!
Research Paper On Of Languages Broad And Ascendant A Review Of Bengali And Urdu
Example of languages broad and ascendant a review of bengali and urdu research paper, understanding bollywood research paper examples.
Don't waste your time searching for a sample.
Get your research paper done by professional writers!
Just from $10/page
Sufi Music Of North India: Example Research Paper By An Expert Writer To Follow
Overview of sufism, good research paper about geographic information, what is dharma and how does it show up specifically in the ramayana research paper sample, what is dharma and how does it show up specifically in the ramayana.
Password recovery email has been sent to [email protected]
Use your new password to log in
You are not register!
By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .
Now you can download documents directly to your device!
Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.
or Use the QR code to Save this Paper to Your Phone
The sample is NOT original!
Short on a deadline?
Don't waste time. Get help with 11% off using code - GETWOWED
No, thanks! I'm fine with missing my deadline

- Hindi to English
- English to Hindi
- Spell Checker
Research मीनिंग : Meaning of Research in Hindi - Definition and Translation

- हिन्दी से अंग्रेजी
- Spell Check
- research Meaning
- Similar words
- Opposite words
- Sentence Usages
RESEARCH MEANING IN HINDI - EXACT MATCHES
Other related words, definition of research.
- systematic investigation to establish facts
- a search for knowledge; "their pottery deserves more research than it has received"
- inquire into; "the students had to research the history of the Second World War for their history project"; "He searched for information on his relatives on the web"; "Scientists are exploring the nature of consciousness"
RELATED SIMILAR WORDS (Synonyms):
Information provided about research:.
Research meaning in Hindi : Get meaning and translation of Research in Hindi language with grammar,antonyms,synonyms and sentence usages by ShabdKhoj. Know answer of question : what is meaning of Research in Hindi? Research ka matalab hindi me kya hai (Research का हिंदी में मतलब ). Research meaning in Hindi (हिन्दी मे मीनिंग ) is शोध.English definition of Research : systematic investigation to establish facts
Search words by Alphabet
Explore shabdkhoj.
ShabdKhoj Type
Advertisements
Meaning summary.
Synonym/Similar Words : explore , inquiry , enquiry , interrogatory , search
👇 SHARE MEANING 👇

IMAGES
VIDEO
COMMENTS
certificate, coverpage in 5 days. इंटरनेशनल जर्नल ऑफ़ हिन्दी रिसर्च पत्रिका का प्राइम फोकस हिंदी से संबंधित लेख प्रकाशित करने के लिए है। यह पत्रिका ...
Shikshan Sanshodhan is a peer-reviewed, indexed, multilingual research journal that publishes original research papers, articles, reviews and case studies in various fields of arts, humanities and social sciences. The journal publishes in Hindi, English, Gujarati, Marathi, Sanskrit, Punjabi, Theology and other languages.
कैसे एक शोधपत्र (Research Paper) लिखें. स्कूल की ऊंची कक्षाओं में पढ़ने के दौरान और कॉलेज पीरियड में हमेशा ही, आपको शोध-पत्र तैयार करने के लिए कहा जाएगा। एक शोध ...
Hindi Text Classification: A Review Abstract: In recent years, Natural Language Processing (NLP) and text analysis has been a topic of great interest among researchers. The utilization of deep learning techniques such as LSTM, Bi-LSTM, CNN and Transformers in text handling has given us remarkable results.
Anthony Gomes Explore the latest full-text research PDFs, articles, conference papers, preprints and more on HINDI. Find methods information, sources, references or conduct a literature...
There are many research works and applications like (1) Chatbot (2) Text-to-speech conversion (3) Language Identification (4) Hands-free computing (5) Spell-check (6) Summarizing-electronic medical records (7) Sentiment Analysis and so on, developed to handle these natural languages for real time needs.
Public Full-text 1 Content uploaded by Dr Rajeev Choudhary Author content Content may be subject to copyright. PDF | On Dec 31, 2019, Sachin Singh and others published Research Paper in Hindi...
Abstract. Non-Hindi speakers in India always accuse that Hindi is imposed on them. As language is an essential component of an individual's and group's identity particularly in the Indian state of Tamil Nadu, Hindi is largely seen as Aryan's language spoken by north Indians. Tensions between Hindi and non-Hindi language have roots in the ...
Linguistics Philology Hindi Research in Education (In Hindi) November 2019 Authors: Noushad Husain Maulana Azad National Urdu University Abstract The book provides in details about the...
The present paper draws attention of researchers to undertake the challenging areas of Hindi language processing and invites them to undertake research projects. Discover the world's...
The core objective of this paper is to present a survey regarding different linguistic resources that exist for Urdu language processing, to highlight different tasks in Urdu language processing and to discuss different state of the art available techniques.
HindiRC (Anuranjana et al., 2019) is a QA-MRC Dataset using Hindi (Indian language). It is a span-based answer MRC that takes data from children's learning supplements from grade 2-5 in India,...
The relationship between multilingualism and translation has been a topic of some research within translation studies in the Western academy though it still requires more in-depth study not only in Western contexts but also in other regions of the world, such as South Asia.
This paper covers the comprehensive analysis and also the comparison of the affect of language structure related factors (morphology, phonetics, WSD, synonyms,) on the performance of search engines supporting Hindi language. Keywords: search engines, morphology, word sense disambiguation, precision, Guruji, Raftaar and Hindi Language. Introduction
With the advancement in computer language technology in a multilingual country like India, numerous linguistics require technology for translation. It aids in research for ancient languages like Sanskrit, Tamil, Telugu, Malayalam to be available for society. Devising these languages require natural language processing, and machine translation is one of its essential areas. It plays a ...
The literature review focuses on the major problems of Hindi text searching over the web. The review reveals the availability of a number of techniques and search engines that have been developed...
Research Paper Vol.-7, Issue-5, May 2019 E-ISSN: 2347-2693 Detection and Correction of Grammatical Errors in Hindi Language Using Hybrid Approach M. Mittal1, S K Sharma2*, A Sethi3 1Department of Computer Science and Engineering,Guru Kashi University ... this research a tagset having more than 630 tags has been proposed. This is the modified ...
these papers various existing technologies and algorithms are mentioned. Following papers are one of the important papers. In a research paper by Sharmila Mani et. al.[2], Optimized N-gram is proposed for faster Word Completion and Next Word Prediction (NWP) for mobile phones in real time. N-gram model is trained in various languages
Abstract- Natural Language Processing (NLP) is a very popular and research area of computer science. NLP is a part of Artificial Intelligent but NLP has combination of many fields such as Hindi, English, and Computer Science etc. This paper contains how verb work in Hindi and English languages and
Script/language :Devnagiri / Hindi Category : Research paper Keywords: निर्गुण प्रेम मार्गी सूफ़ी संत कवि, ज्ञान मार्गी संत काव्य धारा, निर्गुण प्रेम मार्गी सूफ़ी संत काव्य ...
6 samples of this type If you're seeking a possible method to streamline writing a Research Paper about Hindi, WowEssays.com paper writing service just might be able to help you out. For starters, you should skim our large database of free samples that cover most diverse Hindi Research Paper topics and showcase the best academic writing practices.
Research meaning in Hindi : Get meaning and translation of Research in Hindi language with grammar,antonyms,synonyms and sentence usages by ShabdKhoj. Know answer of question : what is meaning of Research in Hindi? Research ka matalab hindi me kya hai (Research का हिंदी में मतलब ). Research meaning in Hindi (हिन्दी मे मीनिंग ) is ...
Research Paper In Hindi Language, Cv Writer, Pay For Popular Creative Essay On Hacking, Best College Essay Ghostwriter Website Au, Simple Essay Ganesh Chaturthi, Essay On My Favourite Subject Hindi, If you're a writer, you know that good writing involves two qualities: clarity and concision. Usually, too, you need to avoid jargon and technical ...