• USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • The Research Problem/Question
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question. In the social and behavioral sciences, studies are most often framed around examining a problem that needs to be understood and resolved in order to improve society and the human condition.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Guba, Egon G., and Yvonna S. Lincoln. “Competing Paradigms in Qualitative Research.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, editors. (Thousand Oaks, CA: Sage, 1994), pp. 105-117; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study.
  • Anchors the research questions, hypotheses, or assumptions to follow . It offers a concise statement about the purpose of your paper.
  • Place the topic into a particular context that defines the parameters of what is to be investigated.
  • Provide the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. This declarative question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What?" question requires a commitment on your part to not only show that you have reviewed the literature, but that you have thoroughly considered the significance of the research problem and its implications applied to creating new knowledge and understanding or informing practice.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible pronouncements; it also does include unspecific determinates like "very" or "giant"],
  • Demonstrate a researchable topic or issue [i.e., feasibility of conducting the study is based upon access to information that can be effectively acquired, gathered, interpreted, synthesized, and understood],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question or small set of questions accompanied by key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's conceptual boundaries or parameters or limitations,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [i.e., regardless of the type of research, it is important to demonstrate that the research is not trivial],
  • Does not have unnecessary jargon or overly complex sentence constructions; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Brown, Perry J., Allen Dyer, and Ross S. Whaley. "Recreation Research—So What?" Journal of Leisure Research 5 (1973): 16-24; Castellanos, Susie. Critical Writing and Thinking. The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Selwyn, Neil. "‘So What?’…A Question that Every Journal Article Needs to Answer." Learning, Media, and Technology 39 (2014): 1-5; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518.

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena. This a common approach to defining a problem in the clinical social sciences or behavioral sciences.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe the significance of a situation, state, or existence of a specific phenomenon. This problem is often associated with revealing hidden or understudied issues.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate specific qualities or characteristics that may be connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study,
  • A declaration of originality [e.g., mentioning a knowledge void or a lack of clarity about a topic that will be revealed in the literature review of prior research],
  • An indication of the central focus of the study [establishing the boundaries of analysis], and
  • An explanation of the study's significance or the benefits to be derived from investigating the research problem.

NOTE :   A statement describing the research problem of your paper should not be viewed as a thesis statement that you may be familiar with from high school. Given the content listed above, a description of the research problem is usually a short paragraph in length.

II.  Sources of Problems for Investigation

The identification of a problem to study can be challenging, not because there's a lack of issues that could be investigated, but due to the challenge of formulating an academically relevant and researchable problem which is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life and in society that the researcher is familiar with. These deductions from human behavior are then placed within an empirical frame of reference through research. From a theory, the researcher can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis, and hence, the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. This can be an intellectually stimulating exercise. A review of pertinent literature should include examining research from related disciplines that can reveal new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue that any single discipline may be able to provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal interviews or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings more relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, lawyers, business leaders, etc., offers the chance to identify practical, “real world” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Don't undervalue your everyday experiences or encounters as worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society or related to your community, your neighborhood, your family, or your personal life. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can be derived from a thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps exist in understanding a topic or where an issue has been understudied. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied in a different context or to different study sample [i.e., different setting or different group of people]. Also, authors frequently conclude their studies by noting implications for further research; read the conclusion of pertinent studies because statements about further research can be a valuable source for identifying new problems to investigate. The fact that a researcher has identified a topic worthy of further exploration validates the fact it is worth pursuing.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered, gradually leading the reader to the more specific issues you are investigating. The statement need not be lengthy, but a good research problem should incorporate the following features:

1.  Compelling Topic The problem chosen should be one that motivates you to address it but simple curiosity is not a good enough reason to pursue a research study because this does not indicate significance. The problem that you choose to explore must be important to you, but it must also be viewed as important by your readers and to a the larger academic and/or social community that could be impacted by the results of your study. 2.  Supports Multiple Perspectives The problem must be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb in the social sciences is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. 3.  Researchability This isn't a real word but it represents an important aspect of creating a good research statement. It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex research project and realize that you don't have enough prior research to draw from for your analysis. There's nothing inherently wrong with original research, but you must choose research problems that can be supported, in some way, by the resources available to you. If you are not sure if something is researchable, don't assume that it isn't if you don't find information right away--seek help from a librarian !

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about, whereas a problem is something to be solved or framed as a question raised for inquiry, consideration, or solution, or explained as a source of perplexity, distress, or vexation. In short, a research topic is something to be understood; a research problem is something that needs to be investigated.

IV.  Asking Analytical Questions about the Research Problem

Research problems in the social and behavioral sciences are often analyzed around critical questions that must be investigated. These questions can be explicitly listed in the introduction [i.e., "This study addresses three research questions about women's psychological recovery from domestic abuse in multi-generational home settings..."], or, the questions are implied in the text as specific areas of study related to the research problem. Explicitly listing your research questions at the end of your introduction can help in designing a clear roadmap of what you plan to address in your study, whereas, implicitly integrating them into the text of the introduction allows you to create a more compelling narrative around the key issues under investigation. Either approach is appropriate.

The number of questions you attempt to address should be based on the complexity of the problem you are investigating and what areas of inquiry you find most critical to study. Practical considerations, such as, the length of the paper you are writing or the availability of resources to analyze the issue can also factor in how many questions to ask. In general, however, there should be no more than four research questions underpinning a single research problem.

Given this, well-developed analytical questions can focus on any of the following:

  • Highlights a genuine dilemma, area of ambiguity, or point of confusion about a topic open to interpretation by your readers;
  • Yields an answer that is unexpected and not obvious rather than inevitable and self-evident;
  • Provokes meaningful thought or discussion;
  • Raises the visibility of the key ideas or concepts that may be understudied or hidden;
  • Suggests the need for complex analysis or argument rather than a basic description or summary; and,
  • Offers a specific path of inquiry that avoids eliciting generalizations about the problem.

NOTE:   Questions of how and why concerning a research problem often require more analysis than questions about who, what, where, and when. You should still ask yourself these latter questions, however. Thinking introspectively about the who, what, where, and when of a research problem can help ensure that you have thoroughly considered all aspects of the problem under investigation and helps define the scope of the study in relation to the problem.

V.  Mistakes to Avoid

Beware of circular reasoning! Do not state the research problem as simply the absence of the thing you are suggesting. For example, if you propose the following, "The problem in this community is that there is no hospital," this only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "So What?" test . In this example, the problem does not reveal the relevance of why you are investigating the fact there is no hospital in the community [e.g., perhaps there's a hospital in the community ten miles away]; it does not elucidate the significance of why one should study the fact there is no hospital in the community [e.g., that hospital in the community ten miles away has no emergency room]; the research problem does not offer an intellectual pathway towards adding new knowledge or clarifying prior knowledge [e.g., the county in which there is no hospital already conducted a study about the need for a hospital, but it was conducted ten years ago]; and, the problem does not offer meaningful outcomes that lead to recommendations that can be generalized for other situations or that could suggest areas for further research [e.g., the challenges of building a new hospital serves as a case study for other communities].

Alvesson, Mats and Jörgen Sandberg. “Generating Research Questions Through Problematization.” Academy of Management Review 36 (April 2011): 247-271 ; Choosing and Refining Topics. Writing@CSU. Colorado State University; D'Souza, Victor S. "Use of Induction and Deduction in Research in Social Sciences: An Illustration." Journal of the Indian Law Institute 24 (1982): 655-661; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question. The Writing Center. George Mason University; Invention: Developing a Thesis Statement. The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation. The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements. University College Writing Centre. University of Toronto; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518; Trochim, William M.K. Problem Formulation. Research Methods Knowledge Base. 2006; Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Walk, Kerry. Asking an Analytical Question. [Class handout or worksheet]. Princeton University; White, Patrick. Developing Research Questions: A Guide for Social Scientists . New York: Palgrave McMillan, 2009; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Apr 11, 2024 1:27 PM
  • URL: https://libguides.usc.edu/writingguide

Generalizability and Transferability

In this chapter, we discuss generalizabililty, transferability, and the interrelationship between the two. We also explain how these two aspects of research operate in different methodologies, demonstrating how researchers may apply these concepts throughout the research process.

Generalizability Overview

Generalizability is applied by researchers in an academic setting. It can be defined as the extension of research findings and conclusions from a study conducted on a sample population to the population at large. While the dependability of this extension is not absolute, it is statistically probable. Because sound generalizability requires data on large populations, quantitative research -- experimental for instance -- provides the best foundation for producing broad generalizability. The larger the sample population, the more one can generalize the results. For example, a comprehensive study of the role computers play in the writing process might reveal that it is statistically probable that students who do most of their composing on a computer will move chunks of text around more than students who do not compose on a computer.

Transferability Overview

Transferability is applied by the readers of research. Although generalizability usually applies only to certain types of quantitative methods, transferability can apply in varying degrees to most types of research . Unlike generalizability, transferability does not involve broad claims, but invites readers of research to make connections between elements of a study and their own experience. For instance, teachers at the high school level might selectively apply to their own classrooms results from a study demonstrating that heuristic writing exercises help students at the college level.

Interrelationships

Generalizability and transferability are important elements of any research methodology, but they are not mutually exclusive: generalizability, to varying degrees, rests on the transferability of research findings. It is important for researchers to understand the implications of these twin aspects of research before designing a study. Researchers who intend to make a generalizable claim must carefully examine the variables involved in the study. Among these are the sample of the population used and the mechanisms behind formulating a causal model. Furthermore, if researchers desire to make the results of their study transferable to another context, they must keep a detailed account of the environment surrounding their research, and include a rich description of that environment in their final report. Armed with the knowledge that the sample population was large and varied, as well as with detailed information about the study itself, readers of research can more confidently generalize and transfer the findings to other situations.

Generalizability

Generalizability is not only common to research, but to everyday life as well. In this section, we establish a practical working definition of generalizability as it is applied within and outside of academic research. We also define and consider three different types of generalizability and some of their probable applications. Finally, we discuss some of the possible shortcomings and limitations of generalizability that researchers must be aware of when constructing a study they hope will yield potentially generalizable results.

In many ways, generalizability amounts to nothing more than making predictions based on a recurring experience. If something occurs frequently, we expect that it will continue to do so in the future. Researchers use the same type of reasoning when generalizing about the findings of their studies. Once researchers have collected sufficient data to support a hypothesis, a premise regarding the behavior of that data can be formulated, making it generalizable to similar circumstances. Because of its foundation in probability, however, such a generalization cannot be regarded as conclusive or exhaustive.

While generalizability can occur in informal, nonacademic settings, it is usually applied only to certain research methods in academic studies. Quantitative methods allow some generalizability. Experimental research, for example, often produces generalizable results. However, such experimentation must be rigorous in order for generalizable results to be found.

An example of generalizability in everyday life involves driving. Operating an automobile in traffic requires that drivers make assumptions about the likely outcome of certain actions. When approaching an intersection where one driver is preparing to turn left, the driver going straight through the intersection assumes that the left-turning driver will yield the right of way before turning. The driver passing through the intersection applies this assumption cautiously, recognizing the possibility that the other driver might turn prematurely.

American drivers also generalize that everyone will drive on the right hand side of the road. Yet if we try to generalize this assumption to other settings, such as England, we will be making a potentially disastrous mistake. Thus, it is obvious that generalizing is necessary for forming coherent interpretations in many different situations, but we do not expect our generalizations to operate the same way in every circumstance. With enough evidence we can make predictions about human behavior, yet we must simultaneously recognize that our assumptions are based on statistical probability.

Consider this example of generalizable research in the field of English studies. A study on undergraduate instructor evaluations of composition instructors might reveal that there is a strong correlation between the grade students are expecting to earn in a course and whether they give their instructor high marks. The study might discover that 95% of students who expect to receive a "C" or lower in their class give their instructor a rating of "average" or below. Therefore, there would be a high probability that future students expecting a "C" or lower would not give their instructor high marks. However, the results would not necessarily be conclusive. Some students might defy the trend. In addition, a number of different variables could also influence students' evaluations of an instructor, including instructor experience, class size, and relative interest in a particular subject. These variables -- and others -- would have to be addressed in order for the study to yield potentially valid results. However, even if virtually all variables were isolated, results of the study would not be 100% conclusive. At best, researchers can make educated predictions of future events or behaviors, not guarantee the prediction in every case. Thus, before generalizing, findings must be tested through rigorous experimentation, which enables researchers to confirm or reject the premises governing their data set.

Considerations

There are three types of generalizability that interact to produce probabilistic models. All of them involve generalizing a treatment or measurement to a population outside of the original study. Researchers who wish to generalize their claims should try to apply all three forms to their research, or the strength of their claims will be weakened (Runkel & McGrath, 1972).

In one type of generalizability, researchers determine whether a specific treatment will produce the same results in different circumstances. To do this, they must decide if an aspect within the original environment, a factor beyond the treatment, generated the particular result. This will establish how flexibly the treatment adapts to new situations. Higher adaptability means that the treatment is generalizable to a greater variety of situations. For example, imagine that a new set of heuristic prewriting questions designed to encourage freshman college students to consider audience more fully works so well that the students write thoroughly developed rhetorical analyses of their target audiences. To responsibly generalize that this heuristic is effective, a researcher would need to test the same prewriting exercise in a variety of educational settings at the college level, using different teachers, students, and environments. If the same positive results are produced, the treatment is generalizable.

A second form of generalizability focuses on measurements rather than treatments. For a result to be considered generalizable outside of the test group, it must produce the same results with different forms of measurement. In terms of the heuristic example above, the findings will be more generalizable if the same results are obtained when assessed "with questions having a slightly different wording, or when we use a six-point scale instead of a nine-point scale" (Runkel & McGrath, 1972, p.46).

A third type of generalizability concerns the subjects of the test situation. Although the results of an experiment may be internally valid, that is, applicable to the group tested, in many situations the results cannot be generalized beyond that particular group. Researchers who hope to generalize their results to a larger population should ensure that their test group is relatively large and randomly chosen. However, researchers should consider the fact that test populations of over 10,000 subjects do not significantly increase generalizability (Firestone,1993).

Potential Limitations

No matter how carefully these three forms of generalizability are applied, there is no absolute guarantee that the results obtained in a study will occur in every situation outside the study. In order to determine causal relationships in a test environment, precision is of utmost importance. Yet if researchers wish to generalize their findings, scope and variance must be emphasized over precision. Therefore, it becomes difficult to test for precision and generalizability simultaneously, since a focus on one reduces the reliability of the other. One solution to this problem is to perform a greater number of observations, which has a dual effect: first, it increases the sample population, which heightens generalizability; second, precision can be reasonably maintained because the random errors between observations will average out (Runkel and McGrath, 1972).

Transferability

Transferability describes the process of applying the results of research in one situation to other similar situations. In this section, we establish a practical working definition of transferability as it's applied within and outside of academic research. We also outline important considerations researchers must be aware of in order to make their results potentially transferable, as well as the critical role the reader plays in this process. Finally, we discuss possible shortcomings and limitations of transferability that researchers must be aware of when planning and conducting a study that will yield potentially transferable results.

Transferability is a process performed by readers of research. Readers note the specifics of the research situation and compare them to the specifics of an environment or situation with which they are familiar. If there are enough similarities between the two situations, readers may be able to infer that the results of the research would be the same or similar in their own situation. In other words, they "transfer" the results of a study to another context. To do this effectively, readers need to know as much as possible about the original research situation in order to determine whether it is similar to their own. Therefore, researchers must supply a highly detailed description of their research situation and methods.

Results of any type of research method can be applied to other situations, but transferability is most relevant to qualitative research methods such as ethnography and case studies. Reports based on these research methods are detailed and specific. However, because they often consider only one subject or one group, researchers who conduct such studies seldom generalize the results to other populations. The detailed nature of the results, however, makes them ideal for transferability.

Transferability is easy to understand when you consider that we are constantly applying this concept to aspects of our daily lives. If, for example, you are an inexperienced composition instructor and you read a study in which a veteran writing instructor discovered that extensive prewriting exercises helped students in her classes come up with much more narrowly defined paper topics, you could ask yourself how much the instructor's classroom resembled your own. If there were many similarities, you might try to draw conclusions about how increasing the amount of prewriting your students do would impact their ability to arrive at sufficiently narrow paper topics. In doing so, you would be attempting to transfer the composition researcher's techniques to your own classroom.

An example of transferable research in the field of English studies is Berkenkotter, Huckin, and Ackerman's (1988) study of a graduate student in a rhetoric Ph.D. program. In this case study, the researchers describe in detail a graduate student's entrance into the language community of his academic program, and particularly his struggle learning the writing conventions of this community. They make conclusions as to why certain things might have affected the graduate student, "Nate," in certain ways, but they are unable to generalize their findings to all graduate students in rhetoric Ph.D. programs. It is simply one study of one person in one program. However, from the level of detail the researchers provide, readers can take certain aspects of Nate's experience and apply them to other contexts and situations. This is transferability. First-year graduate students who read the Berkenhotter, Huckin, and Ackerman study may recognize similarities in their own situation while professors may recognize difficulties their students are having and understand these difficulties a bit better. The researchers do not claim that their results apply to other situations. Instead, they report their findings and make suggestions about possible causes for Nate's difficulties and eventual success. Readers then look at their own situation and decide if these causes may or may not be relevant.

When designing a study researchers have to consider their goals: Do they want to provide limited information about a broad group in order to indicate trends or patterns? Or do they want to provide detailed information about one person or small group that might suggest reasons for a particular behavior? The method they choose will determine the extent to which their results can be transferred since transferability is more applicable to certain kinds of research methods than others.

Thick Description: When writing up the results of a study, it is important that the researcher provide specific information about and a detailed description of her subject(s), location, methods, role in the study, etc. This is commonly referred to as "thick description" of methods and findings; it is important because it allows readers to make an informed judgment about whether they can transfer the findings to their own situation. For example, if an educator conducts an ethnography of her writing classroom, and finds that her students' writing improved dramatically after a series of student-teacher writing conferences, she must describe in detail the classroom setting, the students she observed, and her own participation. If the researcher does not provide enough detail, it will be difficult for readers to try the same strategy in their own classrooms. If the researcher fails to mention that she conducted this research in a small, upper-class private school, readers may transfer the results to a large, inner-city public school expecting a similar outcome.

The Reader's Role: The role of readers in transferability is to apply the methods or results of a study to their own situation. In doing so, readers must take into account differences between the situation outlined by the researcher and their own. If readers of the Berkenhotter, Huckin, and Ackerman study are aware that the research was conducted in a small, upper-class private school, but decide to test the method in a large inner-city public school, they must make adjustments for the different setting and be prepared for different results.

Likewise, readers may decide that the results of a study are not transferable to their own situation. For example, if a study found that watching more than 30 hours of television a week resulted in a worse GPA for graduate students in physics, graduate students in broadcast journalism may conclude that these results do not apply to them.

Readers may also transfer only certain aspects of the study and not the entire conclusion. For example, in the Berkenhotter, Huckin, and Ackerman study, the researchers suggest a variety of reasons for why the graduate student studied experienced difficulties adjusting to his Ph.D. program. Although composition instructors cannot compare "Nate" to first-year college students in their composition class, they could ask some of the same questions about their own class, offering them insight into some of the writing difficulties the first-year undergraduates are experiencing. It is up to readers to decide what findings are important and which may apply to their own situation; if researchers fulfill their responsibility to provide "thick description," this decision is much easier to make.

Understanding research results can help us understand why and how something happens. However, many researchers believe that such understanding is difficult to achieve in relation to human behaviors which they contend are too difficult to understand and often impossible to predict. "Because of the many and varied ways in which individuals differ from each other and because these differences change over time, comprehensive and definitive experiments in the social sciences are not possible...the most we can ever realistically hope to achieve in educational research is not prediction and control but rather only temporary understanding" (Cziko, 1993, p. 10).

Cziko's point is important because transferability allows for "temporary understanding." Instead of applying research results to every situation that may occur in the future, we can apply a similar method to another, similar situation, observe the new results, apply a modified version to another situation, and so on. Transferability takes into account the fact that there are no absolute answers to given situations; rather, every individual must determine their own best practices. Transferring the results of research performed by others can help us develop and modify these practices. However, it is important for readers of research to be aware that results cannot always be transferred; a result that occurs in one situation will not necessarily occur in a similar situation. Therefore, it is critical to take into account differences between situations and modify the research process accordingly.

Although transferability seems to be an obvious, natural, and important method for applying research results and conclusions, it is not perceived as a valid research approach in some academic circles. Perhaps partly in response to critics, in many modern research articles, researchers refer to their results as generalizable or externally valid. Therefore, it seems as though they are not talking about transferability. However, in many cases those same researchers provide direction about what points readers may want to consider, but hesitate to make any broad conclusions or statements. These are characteristics of transferable results.

Generalizability is actually, as we have seen, quite different from transferability. Unfortunately, confusion surrounding these two terms can lead to misinterpretation of research results. Emphasis on the value of transferable results -- as well as a clear understanding among researchers in the field of English of critical differences between the conditions under which research can be generalized, transferred, or, in some cases, both generalized and transferred -- could help qualitative researchers avoid some of the criticisms launched by skeptics who question the value of qualitative research methods.

Generalizability and Transferability: Synthesis

Generalizability allows us to form coherent interpretations in any situation, and to act purposefully and effectively in daily life. Transferability gives us the opportunity to sort through given methods and conclusions to decide what to apply to our own circumstances. In essence, then, both generalizability and transferability allow us to make comparisons between situations. For example, we can generalize that most people in the United States will drive on the right side of the road, but we cannot transfer this conclusion to England or Australia without finding ourselves in a treacherous situation. It is important, therefore, to always consider context when generalizing or transferring results.

Whether a study emphasizes transferability or generalizability is closely related to the goals of the researcher and the needs of the audience. Studies done for a magazine such as Time or a daily newspaper tend towards generalizability, since the publishers want to provide information relevant to a large portion of the population. A research project pointed toward a small group of specialists studying a similar problem may emphasize transferability, since specialists in the field have the ability to transfer aspects of the study results to their own situations without overt generalizations provided by the researcher. Ultimately, the researcher's subject, audience, and goals will determine the method the researcher uses to perform a study, which will then determine the transferability or generalizability of the results.

A Comparison of Generalizability and Transferability

Although generalizability has been a preferred method of research for quite some time, transferability is relatively a new idea. In theory, however, it has always accompanied research issues. It is important to note that generalizability and transferability are not necessarily mutually exclusive; they can overlap.

From an experimental study to a case study, readers transfer the methods, results, and ideas from the research to their own context. Therefore, a generalizable study can also be transferable. For example, a researcher may generalize the results of a survey of 350 people in a university to the university population as a whole; readers of the results may apply, or transfer, the results to their own situation. They will ask themselves, basically, if they fall into the majority or not. However, a transferable study is not always generalizable. For example, in case studies , transferability allows readers the option of applying results to outside contexts, whereas generalizability is basically impossible because one person or a small group of people is not necessarily representative of the larger population.

Controversy, Worth, and Function

Research in the natural sciences has a long tradition of valuing empirical studies; experimental investigation has been considered "the" way to perform research. As social scientists adapted the methods of natural science research to their own needs, they adopted this preference for empirical research. Therefore, studies that are generalizable have long been thought to be more worthwhile; the value of research was often determined by whether a study was generalizable to a population as a whole. However, more and more social scientists are realizing the value of using a variety of methods of inquiry, and the value of transferability is being recognized.

It is important to recognize that generalizability and transferability do not alone determine a study's worth. They perform different functions in research, depending on the topic and goals of the researcher. Where generalizable studies often indicate phenomena that apply to broad categories such as gender or age, transferability can provide some of the how and why behind these results.

However, there are weaknesses that must be considered. Researchers can study a small group that is representative of a larger group and claim that it is likely that their results are applicable to the larger group, but it is impossible for them to test every single person in the larger group. Their conclusions, therefore, are only valid in relation to their own studies. Another problem is that a non-representative group can lead to a faulty generalization. For example, a study of composition students'; revision capabilities which compared students' progress made during a semester in a computer classroom with progress exhibited by students in a traditional classroom might show that computers do aid students in the overall composing process. However, if it were discovered later that an unusually high number of students in the traditional classrooms suffered from substance abuse problems outside of the classroom, the population studied would not be considered representative of the student population as a whole. Therefore, it would be problematic to generalize the results of the study to a larger student population.

In the case of transferability, readers need to know as much detail as possible about a research situation in order to accurately transfer the results to their own. However, it is impossible to provide an absolutely complete description of a situation, and missing details may lead a reader to transfer results to a situation that is not entirely similar to the original one.

Applications to Research Methods

The degree to which generalizability and transferability are applicable differs from methodology to methodology as well as from study to study. Researchers need to be aware of these degrees so that results are not undermined by over-generalizations, and readers need to ensure that they do not read researched results in such a way that the results are misapplied or misinterpreted.

Applications of Transferability and Generalizability: Case Study

Research Design Case studies examine individuals or small groups within a specific context. Research is typically gathered through qualitative means: interviews, observations, etc. Data is usually analyzed either holistically or by coding methods.

Assumptions In research involving case studies, a researcher typically assumes that the results will be transferable. Generalizing is difficult or impossible because one person or small group cannot represent all similar groups or situations. For example, one group of beginning writing students in a particular classroom cannot represent all beginning student writers. Also, conclusions drawn in case studies are only about the participants being observed. With rare exceptions, case studies are not meant to establish cause/effect relationships between variables. The results of a case study are transferable in that researchers "suggest further questions, hypotheses, and future implications," and present the results as "directions and questions" (Lauer & Asher 32).

Example In order to illustrate the writing skills of beginning college writers, a researcher completing a case study might single out one or more students in a composition classroom and set about talking to them about how they judge their own writing as well as reading actual papers, setting up criteria for judgment, and reviewing paper grades/teacher interpretation.

Results of a Study In presenting the results of the previous example, a researcher should define the criteria that were established in order to determine what the researcher meant by "writing skills," provide noteworthy quotes from student interviews, provide other information depending on the kinds of research methods used (e.g., surveys, classroom observation, collected writing samples), and include possibilities for furthering this type of research. Readers are then able to assess for themselves how the researcher's observations might be transferable to other writing classrooms.

Applications of Transferability and Generalizability: Ethnography

Research Design Ethnographies study groups and/or cultures over a period of time. The goal of this type of research is to comprehend the particular group/culture through observer immersion into the culture or group. Research is completed through various methods, which are similar to those of case studies, but since the researcher is immersed within the group for an extended period of time, more detailed information is usually collected during the research. (Jonathon Kozol's "There Are No Children Here" is a good example of this.)

Assumptions As with case studies, findings of ethnographies are also considered to be transferable. The main goals of an ethnography are to "identify, operationally define, and interrelate variables" within a particular context, which ultimately produce detailed accounts or "thick descriptions" (Lauer & Asher 39). Unlike a case study, the researcher here discovers many more details. Results of ethnographies should "suggest variables for further investigation" and not generalize beyond the participants of a study (Lauer & Asher 43). Also, since analysts completing this type of research tend to rely on multiple methods to collect information (a practice also referred to as triangulation), their results typically help create a detailed description of human behavior within a particular environment.

Example The Iowa Writing Program has a widespread reputation for producing excellent writers. In order to begin to understand their training, an ethnographer might observe students throughout their degree program. During this time, the ethnographer could examine the curriculum, follow the writing processes of individual writers, and become acquainted with the writers and their work. By the end of a two year study, the researcher would have a much deeper understanding of the unique and effective features of the program.

Results of a Study Obviously, the Iowa Writing Program is unique, so generalizing any results to another writing program would be problematic. However, an ethnography would provide readers with insights into the program. Readers could ask questions such as: what qualities make it strong and what is unique about the writers who are trained within the program? At this point, readers could attempt to "transfer" applicable knowledge and observations to other writing environments.

Applications of Transferability and Generalizability: Experimental Research

Research Design A researcher working within this methodology creates an environment in which to observe and interpret the results of a research question. A key element in experimental research is that participants in a study are randomly assigned to groups. In an attempt to create a causal model (i.e., to discover the causal origin of a particular phenomenon), groups are treated differently and measurements are conducted to determine if different treatments appear to lead to different effects.

Assumptions Experimental research is usually thought to be generalizable. This methodology explores cause/effect relationships through comparisons among groups (Lauer & Asher 152). Since participants are randomly assigned to groups, and since most experiments involve enough individuals to reasonably approximate the populations from which individual participants are drawn, generalization is justified because "over a large number of allocations, all the groups of subjects will be expected to be identical on all variables" (155).

Example A simplified example: Six composition classrooms are randomly chosen (as are the students and instructors) in which three instructors incorporate the use of electronic mail as a class activity and three do not. When students in the first three classes begin discussing their papers through e-mail and, as a result, make better revisions to their papers than students in the other three classes, a researcher is likely to conclude that incorporating e-mail within a writing classroom improves the quality of students' writing.

Results of a Study Although experimental research is based on cause/effect relationships, "certainty" can never be obtained, but rather results are "probabilistic" (Lauer and Asher 161). Depending on how the researcher has presented the results, they are generalizable in that the students were selected randomly. Since the quality of writing improved with the use of e-mail within all three classrooms, it is probable that e-mail is the cause of the improvement. Readers of this study would transfer the results when they sorted out the details: Are these students representative of a group of students with which the reader is familiar? What types of previous writing experiences have these students had? What kind of writing was expected from these students? The researcher must have provided these details in order for the results to be transferable.

Applications of Transferability and Generalizability: Survey

Research Design The goal of a survey is to gain specific information about either a specific group or a representative sample of a particular group. Survey respondents are asked to respond to one or more of the following kinds of items: open-ended questions, true-false questions, agree-disagree (or Likert) questions, rankings, ratings, and so on. Results are typically used to understand the attitudes, beliefs, or knowledge of a particular group.

Assumptions Assuming that care has been taken in the development of the survey items and selection of the survey sample and that adequate response rates have been achieved, surveys results are generalizable. Note, however, that results from surveys should be generalized only to the population from which the survey results were drawn.

Example For instance, a survey of Colorado State University English graduate students undertaken to determine how well French philosopher/critic Jacques Derrida is understood before and after students take a course in critical literary theory might inform professors that, overall, Derrida's concepts are understood and that CSU's literary theory class, E615, has helped students grasp Derrida's ideas.

Results of a Study The generalizability of surveys depends on several factors. Whether distributed to a mass of people or a select few, surveys are of a "personal nature and subject to distortion." Survey respondents may or may not understand the questions being asked of them. Depending on whether or not the survey designer is nearby, respondents may or may not have the opportunity to clarify their misunderstandings.

It is also important to keep in mind that errors can occur at the development and processing levels. A researcher may inadequately pose questions (that is, not ask the right questions for the information being sought), disrupt the data collection (surveying certain people and not others), and distort the results during the processing (misreading responses and not being able to question the participant, etc.). One way to avoid these kinds of errors is for researchers to examine other studies of a similar nature and compare their results with results that have been obtained in previous studies. This way, any large discrepancies will be exposed. Depending on how large those discrepancies are and what the context of the survey is, the results may or may not be generalizable. For example, if an improved understanding of Derrida is apparent after students complete E615, it can be theorized that E615 effectively teaches students the concepts of Derrida. Issues of transferability might be visible in the actual survey questions themselves; that is, they could provide critical background information readers might need to know in order to transfer the results to another context.

The Qualitative versus Quantitative Debate

In Miles and Huberman's 1994 book Qualitative Data Analysis , quantitative researcher Fred Kerlinger is quoted as saying, "There's no such thing as qualitative data. Everything is either 1 or 0" (p. 40). To this another researcher, D. T. Campbell, asserts "all research ultimately has a qualitative grounding" (p. 40). This back and forth banter among qualitative and quantitative researchers is "essentially unproductive" according to Miles and Huberman. They and many other researchers agree that these two research methods need each other more often than not. However, because typically qualitative data involves words and quantitative data involves numbers, there are some researchers who feel that one is better (or more scientific) than the other. Another major difference between the two is that qualitative research is inductive and quantitative research is deductive. In qualitative research, a hypothesis is not needed to begin research. However, all quantitative research requires a hypothesis before research can begin.

Another major difference between qualitative and quantitative research is the underlying assumptions about the role of the researcher. In quantitative research, the researcher is ideally an objective observer that neither participates in nor influences what is being studied. In qualitative research, however, it is thought that the researcher can learn the most about a situation by participating and/or being immersed in it. These basic underlying assumptions of both methodologies guide and sequence the types of data collection methods employed.

Although there are clear differences between qualitative and quantitative approaches, some researchers maintain that the choice between using qualitative or quantitative approaches actually has less to do with methodologies than it does with positioning oneself within a particular discipline or research tradition. The difficulty of choosing a method is compounded by the fact that research is often affiliated with universities and other institutions. The findings of research projects often guide important decisions about specific practices and policies. The choice of which approach to use may reflect the interests of those conducting or benefitting from the research and the purposes for which the findings will be applied. Decisions about which kind of research method to use may also be based on the researcher's own experience and preference, the population being researched, the proposed audience for findings, time, money, and other resources available (Hathaway, 1995).

Some researchers believe that qualitative and quantitative methodologies cannot be combined because the assumptions underlying each tradition are so vastly different. Other researchers think they can be used in combination only by alternating between methods: qualitative research is appropriate to answer certain kinds of questions in certain conditions and quantitative is right for others. And some researchers think that both qualitative and quantitative methods can be used simultaneously to answer a research question.

To a certain extent, researchers on all sides of the debate are correct: each approach has its drawbacks. Quantitative research often "forces" responses or people into categories that might not "fit" in order to make meaning. Qualitative research, on the other hand, sometimes focuses too closely on individual results and fails to make connections to larger situations or possible causes of the results. Rather than discounting either approach for its drawbacks, though, researchers should find the most effective ways to incorporate elements of both to ensure that their studies are as accurate and thorough as possible.

It is important for researchers to realize that qualitative and quantitative methods can be used in conjunction with each other. In a study of computer-assisted writing classrooms, Snyder (1995) employed both qualitative and quantitative approaches. The study was constructed according to guidelines for quantitative studies: the computer classroom was the "treatment" group and the traditional pen and paper classroom was the "control" group. Both classes contained subjects with the same characteristics from the population sampled. Both classes followed the same lesson plan and were taught by the same teacher in the same semester. The only variable used was the computers. Although Snyder set this study up as an "experiment," she used many qualitative approaches to supplement her findings. She observed both classrooms on a regular basis as a participant-observer and conducted several interviews with the teacher both during and after the semester. However, there were several problems in using this approach: the strict adherence to the same syllabus and lesson plans for both classes and the restricted access of the control group to the computers may have put some students at a disadvantage. Snyder also notes that in retrospect she should have used case studies of the students to further develop her findings. Although her study had certain flaws, Snyder insists that researchers can simultaneously employ qualitative and quantitative methods if studies are planned carefully and carried out conscientiously.

Annotated Bibliography

Babbie, Earl R. (1979). The practice of social research . Belmont: Wadsworth Publishing Company, Inc.

A comprehensive review of social scientific research, including techniques for research. The logic behind social scientific research is discussed.

Berkenkotter, C., Huckin, T.N., & Ackerman, J. (1988). Conventions, conversations, and the writer: Case study of a student in a rhetoric Ph.D. program. Research in the Teaching of English 22 (1), 9-44.

Describes a case study of a beginning student in a Ph.D. program. Looks at the process of his entry into an academic discourse community.

Black, Susan. (1996). Redefining the teacher's role. Executive Educator,18 (8), 23-26.

Discusses the value of well-trained teacher-researchers performing research in their classrooms. Notes that teacher-research focuses on the particular; it does not look for broad, generalizable principles.

Blank, Steven C. (1984). Practical business research methods . Westport: AVI Publishing Company, Inc.

A comprehensive book of how to set up a research project, collect data, and reach and report conclusions.

Bridges, David. (1993). Transferable Skills: A Philosophical Perspective. Studies in Higher Education 18 (1), 43-51.

Transferability of skills in learning is discussed, focusing on the notions of cross-disciplinary, generic, core, and transferable skills and their role in the college curriculum.

Brookhart, Susan M. & Rusnak, Timothy G. (1993). A pedagogy of enrichment, not poverty: Successful lessons of exemplary urban teachers. Journal of Teacher Education, 44 (1), 17-27.

Reports the results of a study that explored the characteristics of effective urban teachers in Pittsburgh. Suggests that the results may be transferable to urban educators in other contexts.

Bryman, Alan. (1988). Quantity and quality in social research . Boston: Unwin Hyman Ltd.

Butcher, Jude. (1994, July). Cohort and case study components in teacher education research. Paper presented at the annual conference of the Australian Teacher Education Association, Brisbane, Queensland, Australia.

Argues that studies of teacher development will be more generalizable if a broad set of methods are used to collect data, if the data collected is both extensive and intensive, and if the methods used take into account the differences in people and situations being studied.

Carter, Duncan. (1993). Critical thinking for writers: Transferable skills or discipline-specific strategies? Composition Studies/Freshman English News, 21 (1), 86-93.

Questions the context-dependency of critical thinking, and whether critical thinking skills are transferable to writing tasks.

Carter, Kathy. (1993). The place of story in the study of teaching and teacher education. Educational Researcher, 22 (1), 5-12.

Discusses the advantages of story-telling in teaching and teacher education, but cautions instructors, who are currently unfamiliar with story-telling in current pedagogical structures, to be careful in implementing this method in their teaching.

Clonts, Jean G. (1992, January). The concept of reliability as it pertains to data from qualitative studies. Paper presented at the annual meeting of the Southwest Educational Research Association, Houston, TX.

Presents a review of literature on reliability in qualitative studies and defines reliability as the extent to which studies can be replicated by using the same methods and getting the same results. Strategies to enhance reliability through study design, data collection, and data analysis are suggested. Generalizability as an estimate of reliability is also explored.

Connelly, Michael F. & Clandinin D. Jean. (1990). Stories of experience and narrative inquiry. Educational Researcher, 19. (5), 2-14.

Describes narrative as a site of inquiry and a qualitative research methodology in which experiences of observer and observed interact. This form of research necessitates the development of new criteria, which may include apparency, verisimilitude, and transferability (7).

Crocker, Linda & Algina, James. (1986). Introduction to classical & modern test theory. New York: Holt, Rinehart and Winston.

Discusses test theory and its application to psychometrics. Chapters range from general overview of major issues to statistical methods and application.

Cronbach, Lee J. et al. (1967). The dependability of behavioral measurements: multifaceted studies of generalizability. Stanford: Stanford UP.

A technical research report that includes statistical methodology in order to contrast multifaceted generalizability with classical reliability.

Cziko, Gary A. (1992). Purposeful behavior as the control of perception: implications for educational research. Educational Researcher, 21 (9), 10-18. El-Hassan, Karma. (1995). Students' Rating of Instruction: Generalizability of Findings. Studies in Educational Research 21 (4), 411-29.

Issues of dimensionality, validity, reliability, and generalizability of students' ratings of instruction are discussed in relation to a study in which 610 college students who evaluated their instructors on the Teacher Effectiveness Scale.

Feingold, Alan. (1994). Gender differences in variability in intellectual abilities: a cross-cultural perspective. Sex Roles: A Journal of Research 20 (1-2), 81-93.

Feingold conducts a cross-cultural quantitative review of contemporary findings of gender differences in variability in verbal, mathematical, and spatial abilities to assess the generalizability of U.S. findings that males are more variable than females in mathematical and spatial abilities, and the sexes are equally variable in verbal ability.

Firestone,William A. (1993). Alternative arguments for generalizing from data as applied to qualitative research. Educational Researcher, 22 (4), 16-22.

Focuses on generalization in three areas of qualitative research: sample to population extrapolation, analytic generalization, and case-to-case transfer (16). Explains underlying principles, related theories, and criteria for each approach.

Fyans, Leslie J. (Ed.). (1983). Generalizability theory: Inferences and practical applications. In New Directions for Testing and Measurement: Vol. 18. San Francisco: Jossey-Bass.

A collection of articles on generalizability theory. The goal of the book is to present different aspects and applications of generalizability theory in a way that allows the reader to apply the theory.

Hammersley, Martyn. (Ed.). (1993). Social research: Philosophy, politics and practice. Newbury Park, CA: Sage Publications.

A collection of articles that provide an overview of positivism; includes an article on increasing the generalizability of qualitative research by Janet Ward Schofield.

Hathaway, R. (1995). Assumptions underlying quantitative and qualitative research: Implications for institutional research. Research in higher education, 36 (5), 535-562.

Hathaway says that the choice between using qualitative or quantitative approaches is less about methodology and more about aligning oneself with particular theoretical and academic traditions. He concluded that the two approaches address questions in very different ways, each one having its own advantages and drawbacks.

Heck, Ronald H., Marcoulides, George A. (1996). . Research in the Teaching of English 22 (1), 9-44.

Hipps, Jerome A. (1993). Trustworthiness and authenticity: Alternate ways to judge authentic assessments. Paper presented at the annual meeting of the American Educational Research Association, Atlanta, GA.

Contrasts the foundational assumptions of the constructivist approach to traditional research and the positivist approach to authentic assessment in relation to generalizability and other research issues.

Howe, Kenneth & Eisenhart, Margaret. (1990). Standards for qualitative (and quantitative) research: A prolegomenon. Educational Researcher, 19 (4), 2-9.

Huang, Chi-yu, et al. (1995, April). A generalizability theory approach to examining teaching evaluation instruments completed by students. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.

Presents the results of a study that used generalizability theory to investigate the reasons for variability in a teacher and course evaluation mechanism.

Hungerford, Harold R. et al. (1992). Investigating and Evaluating Environmental Issues and Actions: Skill Development Modules .

A guide designed to teach students how to investigate and evaluate environmental issues and actions. The guide is presented in six modules including information collecting and surveys, questionnaires, and opinionnaires.

Jackson, Philip W. (1990). The functions of educational research. Educational Researcher 19 (7), 3-9. Johnson, Randell G. (1993, April). A validity generalization study of the multiple assessment and program services test. Paper presented at the annual meeting of the American Educational Research Association, Atlanta, GA.

Presents results of study of validity reports of the Multiple Assessment and Program Services Test using quantitative analysis to determine the generalizability of the results.

Jones, Elizabeth A & Ratcliff, Gary. (1993). Critical thinking skills for college students. (National Center on Postsecondary Teaching, Learning, and Asessment). University Park, PA.

Reviews research literature exploring the nature of critical thinking; discusses the extent to which critical thinking is generalizable across disciplines.

Karpinski, Jakub. (1990). Causality in Sociological Research . Boston: Kluwer Academic Publishers.

Discusses causality and causal analysis in terms of sociological research. Provides equations and explanations.

Kirsch, Irwin S. & Jungeblut, Ann. (1995). Using large-scale assessment results to identify and evaluate generalizable indicators of literacy. (National Center on Adult Literacy, Publication No. TR94-19). Philadelphia, PA.

Reports analysis of data collected during an extensive literacy survey in order to help understand the different variables involved in literacy proficiency. Finds that literacy skills can be predicted across large, heterogeneous populations, but not as effectively across homogeneous populations.

Lauer, Janice M. & Asher, J. William. (1988). Composition research: empirical designs. New York: Oxford Press.

Explains the selection of subjects, formulation of hypotheses or questions, data collection, data analysis, and variable identification through discussion of each design.

LeCompte, Margaret & Goetz, Judith Preissle. (1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 52 (1), 31-60.

Concentrates on educational research and ethnography and shows how to better take reliability and validity into account when doing ethnographic research.

Marcoulides, George; Simkin, Mark G. (1991). Evaluating student papers: the case for peer review. Journal of Education for Business 67 (2), 80-83.

A preprinted evaluation form and generalizability theory are used to judge the reliability of student grading of their papers.

Maxwell, Joseph A. (1992). Understanding and validity in qualitative research. Harvard Educational Review, 62 (3), 279-300.

Explores the five types of validity used in qualitative research, including generalizable validity, and examines possible threats to research validity.

McCarthy, Christine L. (1996, Spring). What is "critical thinking"? Is it generalizable? Educational Theory, 46 217-239.

Reviews, compares and contrasts a selection of essays from Stephen P. Norris' book The Generalizability of Critical Thinking: Multiple Perspectives on an Education Ideal in order to explore the diversity of the topic of critical thinking.

Miles, Matthew B. & Huberman, A. Michael. (1994). Qualitative data analysis. Thousand Oaks: Sage Publications.

A comprehensive review of data analysis. Subjects range from collecting data to producing an actual report.

Minium, Edward W. & King, M. Bruce, & Bear, Gordon. (1993). Statistical reasoning in psychology and education . New York: John Wiley & Sons, Inc.

A textbook designed to teach students about statistical data and theory.

Moss, Pamela A. (1992). Shifting conceptions of validity in educational measurement: Implications for performance assessment. Review of Educational Research, 62 (3), 229-258. Nachmias, David & Nachmias, Chava . (1981). Research methods in the social sciences. New York: St. Martin's Press.

Discusses the foundations of empirical research, data collection, data processing and analysis, inferential methods, and the ethics of social science research.

Nagy, Philip; Jarchow, Elaine McNally. (1981). Estimating variance components of essay ratings in a complex design. Speech/Conference Paper .

This paper discusses variables influencing written composition quality and how they can be best controlled to improve the reliability assessment of writing ability.

Nagy, William E., Herman, Patricia A., & Anderson, Richard C. (1985). Learning word meanings from context: How broadly generalizable? (University of Illinois at Urbana-Champaign. Center for the Study of Reading, Technical Report No. 347). Cambridge, MA: Bolt, Beranek and Newman.

Reports the results of a study that investigated how students learn word meanings while reading from context. Claims that the study was designed to be generalized.

Naizer, Gilbert. (1992, January). Basic concepts in generalizability theory: A more powerful approach to evaluating reliability. Presented at the annual meeting of the Southwest Educational Research Association, Houston, TX.

Discusses how a measurement approach called generalizability theory (G-theory) is an important alternative to the more classical measurement theory that yields less useful coefficients. G-theory is about the dependability of behavioral measurements that allows the simultaneous estimation of multiple sources of error variance.

Newman, Isadore & Macdonald, Suzanne. (1993, May). Interpreting qualitative data: A methodological inquiry. Paper presented at the annual meeting of the Ohio Academy of Science, Youngstown, OH.

Issues of consistency, triangulation, and generalizability are discussed in relation to a qualitative study involving graduate student participants. The authors refute Polkinghorne's views of the generalizability of qualitative research, arguing that quantitative research is more suitable for generalizability.

Norris, Stephen P. (Ed.). (1992). The generalizability of critical thinking: multiple perspectives on an education ideal. New York: Teachers College Press. A set of essays from a variety of disciplines presenting different perspectives on the topic of the generalizability of critical thinking. The authors refer and respond to each other. Peshkin, Alan. (1993). The goodness of qualitative research. Educational Researcher, 22 (2), 23-29.

Discusses how effective qualitative research can be in obtaining desired results and concludes that it is an important tool scholars can use in their explorations. The four categories of qualitative research--description, interpretation, verification, and evaluation--are examined.

Rafilson, Fred. (1991, July). The case for validity generalization.

Describes generalization as a quantitative process. Briefly discusses theory, method, examples, and applications of validity generalization, emphasizing unseen local methodological problems.

Rhodebeck, Laurie A. The structure of men's and women's feminist orientations: feminist identity and feminist opinion. Gender & Society 10 (4), 386-404.

This study considers two problems: the extent to which feminist opinions are distinct from feminist identity and the generalizability of these separate constructs across gender and time.

Runkel, Philip J. & McGrath, E. Joseph. (1972). Research on human behavior: A systematic guide to method. New York: Holt, Rinehart and Winston, Inc.

Discusses how researchers can utilize their experiences of human behavior and apply them to research in a systematic and explicit fashion.

Salomon, Gavriel. (1991). Transcending the qualitative-quantitative debate: The analytic and systemic approaches to educational research. Educational Researcher, 20 (6), 10-18.

Examines the complex issues/variables involved in studies. Two types of approaches are explored: an Analytic Approach, which assumes internal and external issues, and a Systematic Approach, in which each component affects the whole. Also discusses how a study can never fully measure how much x affects y because there are so many inter-relations. Knowledge is applied differently within each approach.

Schrag, Francis. (1992). In defense of positivist research paradigms. Educational Researcher, 21 (5), 5-8.

Positivist critics Elliot Eisner, Fredrick Erikson, Henry Giroux, and Thomas Popkewitz are logically committed to propositions that can be tested only by means of positivist research paradigms. A definition of positivism is gathered through example. Overall, it is concluded that educational research need not aspire to be practical.

Sekaran, Uma. (1984). Research methods for managers: A skill-building approach. New York: John Wiley and Sons.

Discusses managerial approaches to conducting research in organizations. Provides understandable definitions and explanations of such methods as sampling and data analysis and interpretation.

Shadish, William R. (1995). The logic of generalization: five principles common to experiments and ethnographies. American Journal of Community Psychology 23 (3), 419-29.

Both experiments and ethnographies are highly localized, so they are often criticized for lack of generalizability. This article describes a logic of generalization that may help solve such problems.

Shavelson, Richard J. & Webb, Noreen M. (1991). Generalizability theory: A primer. Newbury Park, CA: Sage Publications.

Snyder, I. (1995). Multiple perspectives in literacy research: Integrating the quantitative and qualitative. Language and Education, 9 (1), 45-59.

This article explains a study in which the author employed quantitative and qualitative methods simultaneously to compare computer composition classrooms and traditional classrooms. Although there were some problems with integrating both approaches, Snyder says they can be used together if researchers plan carefully and use their methods thoughtfully.

Stallings, William M. (1995). Confessions of a quantitative educational researcher trying to teach qualitative research. Educational Researcher, 24 (3), 31-32.

Discusses the trials and tribulations of teaching a qualitative research course to graduate students. The author describes the successes and failings he encounters and asks colleagues for suggestions of readings for his syllabus.

Wagner, Ellen D. (1993, January). Evaluating distance learning projects: An approach for cross-project comparisons. Paper presented at the annual meeting of the Association for educational Communication and Technology, New Orleans, LA.

Describes a methodology developed to evaluate distance learning projects in a way that takes into account specific institutional issues while producing generalizable, valid and reliable results that allow for discussion among different institutions.

Yin, Robert K. (1989). Case Study Research: Design and Methods. London: Sage Publications.

A small section on the application of generalizability in regards to case studies.

Citation Information

Jeffrey Barnes, Kerri Conrad, Christof Demont-Heinrich, Mary Graziano, Dawn Kowalski, Jamie Neufeld, Jen Zamora, and Mike Palmquist. (1994-2024). Generalizability and Transferability. The WAC Clearinghouse. Colorado State University. Available at https://wac.colostate.edu/repository/writing/guides/.

Copyright Information

Copyright © 1994-2024 Colorado State University and/or this site's authors, developers, and contributors . Some material displayed on this site is used with permission.

  • SpringerLink shop

Identifying your research question

Making informed decisions about what to study, and defining your research question, even within a predetermined field, is critical to a successful research career, and can be one of the hardest challenges for a scientist.

Being knowledgeable about the state of your field and up-to-date with recent developments can help you:

  • Make decisions about  what to study within niche research areas
  • Identify  top researchers  in your field whose work you can follow and potentially collaborate with
  • Find  important journals to read regularly and publish in
  • Explain to others  why your work is important by being able to recount the bigger picture

How can you identify a research question?

Reading regularly is the most common way of identifying a good research question. This enables you to keep up to date with recent advancements and identify certain issues or unsolved problems that keep appearing.

Begin by searching for and reading literature in your field. Start with  general interest  journals, but don’t limit yourself to journal publications only; you can also look for clues in the news or on research blogs. Once you have identified a few interesting topics, you should be reading the table of contents of journals and the abstracts of most articles in that subject area. Papers that are directly related to your research you should read in their entirety.

TIP Keep an eye out for  Review papers and special issues in your chosen subject area as they are very helpful in discovering new areas and hot topics.

TIP: you can sign up to receive table of contents or notifications when articles are published in your field from most journals or publishers.

TIP: Joining a journal club is a great way to read and dissect published papers in and around your subject area. Usually consisting of 5-10 people from the same research group or institute they meet to evaluate the good and bad points of the research presented in the paper. This not only helps you keep up to date with the field but helps you become familiar with what is necessary for a good paper which can help when you come to write your own.

If possible, communicate with some of the authors of these manuscripts via email or in person. Going to conferences if possible is a great way to meet some of these authors. Often,  talking with the author  of an important work in your research area will give you more ideas than just reading the manuscript would.

Back │ Next

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

1.1: The Purpose of Research Questions

  • Last updated
  • Save as PDF
  • Page ID 81161

  • Cheryl Lowry
  • The Ohio State University via Ohio State University Libraries

The Purpose of Research Questions

1-rq.png

Research questions are very important.

Both professional researchers and successful student researchers develop research questions. That’s because research questions are more than handy tools; they are essential to the research process.

By defining exactly what the researcher is trying to find out, these questions influence most of the rest of the steps taken to conduct the research. That’s true even if the research is not for academic purposes but for other areas of our lives.

For instance, if you’re seeking information about a health problem in order to learn whether you have anything to worry about, research questions will make it possible for you to more effectively decide whether to seek medical help–and how quickly.

Or, if you’re researching a potential employer, having developed and used research questions will mean you’re able to more confidently decide whether to apply for an internship or job there.

The confidence you’ll have when making such decisions will come from knowing that the information they’re based on was gathered by conscious thought rather than serendipity and whim.

A Study's Research Question(s) Is/are Transferred into ______

Question 15

A study's research question(s) is/are transferred into ______.

A) the problem statement B) the purpose of the study C) the variables D) the outcomes

Correct Answer:

Unlock this answer now Get Access to more Verified Answers free of charge.

Q10: A variable of school size measured as

Q11: Ideally, how should educators approach their research

Q12: When beginning a study, research questions are

Q13: How do independent variables relate to the

Q14: How should researchers approach their topics? A) clarify

Q16: It is best to think of ______

Q17: Regarding monetary concerns, research studies ______. A) typically

Q18: ______ variables measure gradational differences. A) Continuous B) Independent C)

Q19: Ethical concerns in research studies ______. A) are

Q20: Variables that are not controlled/measured by the

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

browser extension

Get instant 2 free unlocks once you install the browser extension

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Questions – Types, Examples and Writing Guide

Research Questions – Types, Examples and Writing Guide

Table of Contents

Research Questions

Research Questions

Definition:

Research questions are the specific questions that guide a research study or inquiry. These questions help to define the scope of the research and provide a clear focus for the study. Research questions are usually developed at the beginning of a research project and are designed to address a particular research problem or objective.

Types of Research Questions

Types of Research Questions are as follows:

Descriptive Research Questions

These aim to describe a particular phenomenon, group, or situation. For example:

  • What are the characteristics of the target population?
  • What is the prevalence of a particular disease in a specific region?

Exploratory Research Questions

These aim to explore a new area of research or generate new ideas or hypotheses. For example:

  • What are the potential causes of a particular phenomenon?
  • What are the possible outcomes of a specific intervention?

Explanatory Research Questions

These aim to understand the relationship between two or more variables or to explain why a particular phenomenon occurs. For example:

  • What is the effect of a specific drug on the symptoms of a particular disease?
  • What are the factors that contribute to employee turnover in a particular industry?

Predictive Research Questions

These aim to predict a future outcome or trend based on existing data or trends. For example :

  • What will be the future demand for a particular product or service?
  • What will be the future prevalence of a particular disease?

Evaluative Research Questions

These aim to evaluate the effectiveness of a particular intervention or program. For example:

  • What is the impact of a specific educational program on student learning outcomes?
  • What is the effectiveness of a particular policy or program in achieving its intended goals?

How to Choose Research Questions

Choosing research questions is an essential part of the research process and involves careful consideration of the research problem, objectives, and design. Here are some steps to consider when choosing research questions:

  • Identify the research problem: Start by identifying the problem or issue that you want to study. This could be a gap in the literature, a social or economic issue, or a practical problem that needs to be addressed.
  • Conduct a literature review: Conducting a literature review can help you identify existing research in your area of interest and can help you formulate research questions that address gaps or limitations in the existing literature.
  • Define the research objectives : Clearly define the objectives of your research. What do you want to achieve with your study? What specific questions do you want to answer?
  • Consider the research design : Consider the research design that you plan to use. This will help you determine the appropriate types of research questions to ask. For example, if you plan to use a qualitative approach, you may want to focus on exploratory or descriptive research questions.
  • Ensure that the research questions are clear and answerable: Your research questions should be clear and specific, and should be answerable with the data that you plan to collect. Avoid asking questions that are too broad or vague.
  • Get feedback : Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, feasible, and meaningful.

How to Write Research Questions

Guide for Writing Research Questions:

  • Start with a clear statement of the research problem: Begin by stating the problem or issue that your research aims to address. This will help you to formulate focused research questions.
  • Use clear language : Write your research questions in clear and concise language that is easy to understand. Avoid using jargon or technical terms that may be unfamiliar to your readers.
  • Be specific: Your research questions should be specific and focused. Avoid broad questions that are difficult to answer. For example, instead of asking “What is the impact of climate change on the environment?” ask “What are the effects of rising sea levels on coastal ecosystems?”
  • Use appropriate question types: Choose the appropriate question types based on the research design and objectives. For example, if you are conducting a qualitative study, you may want to use open-ended questions that allow participants to provide detailed responses.
  • Consider the feasibility of your questions : Ensure that your research questions are feasible and can be answered with the resources available. Consider the data sources and methods of data collection when writing your questions.
  • Seek feedback: Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, appropriate, and meaningful.

Examples of Research Questions

Some Examples of Research Questions with Research Titles:

Research Title: The Impact of Social Media on Mental Health

  • Research Question : What is the relationship between social media use and mental health, and how does this impact individuals’ well-being?

Research Title: Factors Influencing Academic Success in High School

  • Research Question: What are the primary factors that influence academic success in high school, and how do they contribute to student achievement?

Research Title: The Effects of Exercise on Physical and Mental Health

  • Research Question: What is the relationship between exercise and physical and mental health, and how can exercise be used as a tool to improve overall well-being?

Research Title: Understanding the Factors that Influence Consumer Purchasing Decisions

  • Research Question : What are the key factors that influence consumer purchasing decisions, and how do these factors vary across different demographics and products?

Research Title: The Impact of Technology on Communication

  • Research Question : How has technology impacted communication patterns, and what are the effects of these changes on interpersonal relationships and society as a whole?

Research Title: Investigating the Relationship between Parenting Styles and Child Development

  • Research Question: What is the relationship between different parenting styles and child development outcomes, and how do these outcomes vary across different ages and developmental stages?

Research Title: The Effectiveness of Cognitive-Behavioral Therapy in Treating Anxiety Disorders

  • Research Question: How effective is cognitive-behavioral therapy in treating anxiety disorders, and what factors contribute to its success or failure in different patients?

Research Title: The Impact of Climate Change on Biodiversity

  • Research Question : How is climate change affecting global biodiversity, and what can be done to mitigate the negative effects on natural ecosystems?

Research Title: Exploring the Relationship between Cultural Diversity and Workplace Productivity

  • Research Question : How does cultural diversity impact workplace productivity, and what strategies can be employed to maximize the benefits of a diverse workforce?

Research Title: The Role of Artificial Intelligence in Healthcare

  • Research Question: How can artificial intelligence be leveraged to improve healthcare outcomes, and what are the potential risks and ethical concerns associated with its use?

Applications of Research Questions

Here are some of the key applications of research questions:

  • Defining the scope of the study : Research questions help researchers to narrow down the scope of their study and identify the specific issues they want to investigate.
  • Developing hypotheses: Research questions often lead to the development of hypotheses, which are testable predictions about the relationship between variables. Hypotheses provide a clear and focused direction for the study.
  • Designing the study : Research questions guide the design of the study, including the selection of participants, the collection of data, and the analysis of results.
  • Collecting data : Research questions inform the selection of appropriate methods for collecting data, such as surveys, interviews, or experiments.
  • Analyzing data : Research questions guide the analysis of data, including the selection of appropriate statistical tests and the interpretation of results.
  • Communicating results : Research questions help researchers to communicate the results of their study in a clear and concise manner. The research questions provide a framework for discussing the findings and drawing conclusions.

Characteristics of Research Questions

Characteristics of Research Questions are as follows:

  • Clear and Specific : A good research question should be clear and specific. It should clearly state what the research is trying to investigate and what kind of data is required.
  • Relevant : The research question should be relevant to the study and should address a current issue or problem in the field of research.
  • Testable : The research question should be testable through empirical evidence. It should be possible to collect data to answer the research question.
  • Concise : The research question should be concise and focused. It should not be too broad or too narrow.
  • Feasible : The research question should be feasible to answer within the constraints of the research design, time frame, and available resources.
  • Original : The research question should be original and should contribute to the existing knowledge in the field of research.
  • Significant : The research question should have significance and importance to the field of research. It should have the potential to provide new insights and knowledge to the field.
  • Ethical : The research question should be ethical and should not cause harm to any individuals or groups involved in the study.

Purpose of Research Questions

Research questions are the foundation of any research study as they guide the research process and provide a clear direction to the researcher. The purpose of research questions is to identify the scope and boundaries of the study, and to establish the goals and objectives of the research.

The main purpose of research questions is to help the researcher to focus on the specific area or problem that needs to be investigated. They enable the researcher to develop a research design, select the appropriate methods and tools for data collection and analysis, and to organize the results in a meaningful way.

Research questions also help to establish the relevance and significance of the study. They define the research problem, and determine the research methodology that will be used to address the problem. Research questions also help to determine the type of data that will be collected, and how it will be analyzed and interpreted.

Finally, research questions provide a framework for evaluating the results of the research. They help to establish the validity and reliability of the data, and provide a basis for drawing conclusions and making recommendations based on the findings of the study.

Advantages of Research Questions

There are several advantages of research questions in the research process, including:

  • Focus : Research questions help to focus the research by providing a clear direction for the study. They define the specific area of investigation and provide a framework for the research design.
  • Clarity : Research questions help to clarify the purpose and objectives of the study, which can make it easier for the researcher to communicate the research aims to others.
  • Relevance : Research questions help to ensure that the study is relevant and meaningful. By asking relevant and important questions, the researcher can ensure that the study will contribute to the existing body of knowledge and address important issues.
  • Consistency : Research questions help to ensure consistency in the research process by providing a framework for the development of the research design, data collection, and analysis.
  • Measurability : Research questions help to ensure that the study is measurable by defining the specific variables and outcomes that will be measured.
  • Replication : Research questions help to ensure that the study can be replicated by providing a clear and detailed description of the research aims, methods, and outcomes. This makes it easier for other researchers to replicate the study and verify the results.

Limitations of Research Questions

Limitations of Research Questions are as follows:

  • Subjectivity : Research questions are often subjective and can be influenced by personal biases and perspectives of the researcher. This can lead to a limited understanding of the research problem and may affect the validity and reliability of the study.
  • Inadequate scope : Research questions that are too narrow in scope may limit the breadth of the study, while questions that are too broad may make it difficult to focus on specific research objectives.
  • Unanswerable questions : Some research questions may not be answerable due to the lack of available data or limitations in research methods. In such cases, the research question may need to be rephrased or modified to make it more answerable.
  • Lack of clarity : Research questions that are poorly worded or ambiguous can lead to confusion and misinterpretation. This can result in incomplete or inaccurate data, which may compromise the validity of the study.
  • Difficulty in measuring variables : Some research questions may involve variables that are difficult to measure or quantify, making it challenging to draw meaningful conclusions from the data.
  • Lack of generalizability: Research questions that are too specific or limited in scope may not be generalizable to other contexts or populations. This can limit the applicability of the study’s findings and restrict its broader implications.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

  • Research Questions: Definitions, Types + [Examples]

busayo.longe

Research questions lie at the core of systematic investigation and this is because recording accurate research outcomes is tied to asking the right questions. Asking the right questions when conducting research can help you collect relevant and insightful information that ultimately influences your work, positively. 

The right research questions are typically easy to understand, straight to the point, and engaging. In this article, we will share tips on how to create the right research questions and also show you how to create and administer an online questionnaire with Formplus . 

What is a Research Question? 

A research question is a specific inquiry which the research seeks to provide a response to. It resides at the core of systematic investigation and it helps you to clearly define a path for the research process. 

A research question is usually the first step in any research project. Basically, it is the primary interrogation point of your research and it sets the pace for your work.  

Typically, a research question focuses on the research, determines the methodology and hypothesis, and guides all stages of inquiry, analysis, and reporting. With the right research questions, you will be able to gather useful information for your investigation. 

Types of Research Questions 

Research questions are broadly categorized into 2; that is, qualitative research questions and quantitative research questions. Qualitative and quantitative research questions can be used independently and co-dependently in line with the overall focus and objectives of your research. 

If your research aims at collecting quantifiable data , you will need to make use of quantitative research questions. On the other hand, qualitative questions help you to gather qualitative data bothering on the perceptions and observations of your research subjects. 

Qualitative Research Questions  

A qualitative research question is a type of systematic inquiry that aims at collecting qualitative data from research subjects. The aim of qualitative research questions is to gather non-statistical information pertaining to the experiences, observations, and perceptions of the research subjects in line with the objectives of the investigation. 

Types of Qualitative Research Questions  

  • Ethnographic Research Questions

As the name clearly suggests, ethnographic research questions are inquiries presented in ethnographic research. Ethnographic research is a qualitative research approach that involves observing variables in their natural environments or habitats in order to arrive at objective research outcomes. 

These research questions help the researcher to gather insights into the habits, dispositions, perceptions, and behaviors of research subjects as they interact in specific environments. 

Ethnographic research questions can be used in education, business, medicine, and other fields of study, and they are very useful in contexts aimed at collecting in-depth and specific information that are peculiar to research variables. For instance, asking educational ethnographic research questions can help you understand how pedagogy affects classroom relations and behaviors. 

This type of research question can be administered physically through one-on-one interviews, naturalism (live and work), and participant observation methods. Alternatively, the researcher can ask ethnographic research questions via online surveys and questionnaires created with Formplus.  

Examples of Ethnographic Research Questions

  • Why do you use this product?
  • Have you noticed any side effects since you started using this drug?
  • Does this product meet your needs?

ethnographic-research-questions

  • Case Studies

A case study is a qualitative research approach that involves carrying out a detailed investigation into a research subject(s) or variable(s). In the course of a case study, the researcher gathers a range of data from multiple sources of information via different data collection methods, and over a period of time. 

The aim of a case study is to analyze specific issues within definite contexts and arrive at detailed research subject analyses by asking the right questions. This research method can be explanatory, descriptive , or exploratory depending on the focus of your systematic investigation or research. 

An explanatory case study is one that seeks to gather information on the causes of real-life occurrences. This type of case study uses “how” and “why” questions in order to gather valid information about the causative factors of an event. 

Descriptive case studies are typically used in business researches, and they aim at analyzing the impact of changing market dynamics on businesses. On the other hand, exploratory case studies aim at providing answers to “who” and “what” questions using data collection tools like interviews and questionnaires. 

Some questions you can include in your case studies are: 

  • Why did you choose our services?
  • How has this policy affected your business output?
  • What benefits have you recorded since you started using our product?

case-study-example

An interview is a qualitative research method that involves asking respondents a series of questions in order to gather information about a research subject. Interview questions can be close-ended or open-ended , and they prompt participants to provide valid information that is useful to the research. 

An interview may also be structured, semi-structured , or unstructured , and this further influences the types of questions they include. Structured interviews are made up of more close-ended questions because they aim at gathering quantitative data while unstructured interviews consist, primarily, of open-ended questions that allow the researcher to collect qualitative information from respondents. 

You can conduct interview research by scheduling a physical meeting with respondents, through a telephone conversation, and via digital media and video conferencing platforms like Skype and Zoom. Alternatively, you can use Formplus surveys and questionnaires for your interview. 

Examples of interview questions include: 

  • What challenges did you face while using our product?
  • What specific needs did our product meet?
  • What would you like us to improve our service delivery?

interview-questions

Quantitative Research Questions

Quantitative research questions are questions that are used to gather quantifiable data from research subjects. These types of research questions are usually more specific and direct because they aim at collecting information that can be measured; that is, statistical information. 

Types of Quantitative Research Questions

  • Descriptive Research Questions

Descriptive research questions are inquiries that researchers use to gather quantifiable data about the attributes and characteristics of research subjects. These types of questions primarily seek responses that reveal existing patterns in the nature of the research subjects. 

It is important to note that descriptive research questions are not concerned with the causative factors of the discovered attributes and characteristics. Rather, they focus on the “what”; that is, describing the subject of the research without paying attention to the reasons for its occurrence. 

Descriptive research questions are typically closed-ended because they aim at gathering definite and specific responses from research participants. Also, they can be used in customer experience surveys and market research to collect information about target markets and consumer behaviors. 

Descriptive Research Question Examples

  • How often do you make use of our fitness application?
  • How much would you be willing to pay for this product?

descriptive-research-question

  • Comparative Research Questions

A comparative research question is a type of quantitative research question that is used to gather information about the differences between two or more research subjects across different variables. These types of questions help the researcher to identify distinct features that mark one research subject from the other while highlighting existing similarities. 

Asking comparative research questions in market research surveys can provide insights on how your product or service matches its competitors. In addition, it can help you to identify the strengths and weaknesses of your product for a better competitive advantage.  

The 5 steps involved in the framing of comparative research questions are: 

  • Choose your starting phrase
  • Identify and name the dependent variable
  • Identify the groups you are interested in
  • Identify the appropriate adjoining text
  • Write out the comparative research question

Comparative Research Question Samples 

  • What are the differences between a landline telephone and a smartphone?
  • What are the differences between work-from-home and on-site operations?

comparative-research-question

  • Relationship-based Research Questions  

Just like the name suggests, a relationship-based research question is one that inquires into the nature of the association between two research subjects within the same demographic. These types of research questions help you to gather information pertaining to the nature of the association between two research variables. 

Relationship-based research questions are also known as correlational research questions because they seek to clearly identify the link between 2 variables. 

Read: Correlational Research Designs: Types, Examples & Methods

Examples of relationship-based research questions include: 

  • What is the relationship between purchasing power and the business site?
  • What is the relationship between the work environment and workforce turnover?

relationship-based-research-question

Examples of a Good Research Question

Since research questions lie at the core of any systematic investigations, it is important to know how to frame a good research question. The right research questions will help you to gather the most objective responses that are useful to your systematic investigation. 

A good research question is one that requires impartial responses and can be answered via existing sources of information. Also, a good research question seeks answers that actively contribute to a body of knowledge; hence, it is a question that is yet to be answered in your specific research context.

  • Open-Ended Questions

 An open-ended question is a type of research question that does not restrict respondents to a set of premeditated answer options. In other words, it is a question that allows the respondent to freely express his or her perceptions and feelings towards the research subject. 

Examples of Open-ended Questions

  • How do you deal with stress in the workplace?
  • What is a typical day at work like for you?
  • Close-ended Questions

A close-ended question is a type of survey question that restricts respondents to a set of predetermined answers such as multiple-choice questions . Close-ended questions typically require yes or no answers and are commonly used in quantitative research to gather numerical data from research participants. 

Examples of Close-ended Questions

  • Did you enjoy this event?
  • How likely are you to recommend our services?
  • Very Likely
  • Somewhat Likely
  • Likert Scale Questions

A Likert scale question is a type of close-ended question that is structured as a 3-point, 5-point, or 7-point psychometric scale . This type of question is used to measure the survey respondent’s disposition towards multiple variables and it can be unipolar or bipolar in nature. 

Example of Likert Scale Questions

  • How satisfied are you with our service delivery?
  • Very dissatisfied
  • Not satisfied
  • Very satisfied
  • Rating Scale Questions

A rating scale question is a type of close-ended question that seeks to associate a specific qualitative measure (rating) with the different variables in research. It is commonly used in customer experience surveys, market research surveys, employee reviews, and product evaluations. 

Example of Rating Questions

  • How would you rate our service delivery?

  Examples of a Bad Research Question

Knowing what bad research questions are would help you avoid them in the course of your systematic investigation. These types of questions are usually unfocused and often result in research biases that can negatively impact the outcomes of your systematic investigation. 

  • Loaded Questions

A loaded question is a question that subtly presupposes one or more unverified assumptions about the research subject or participant. This type of question typically boxes the respondent in a corner because it suggests implicit and explicit biases that prevent objective responses. 

Example of Loaded Questions

  • Have you stopped smoking?
  • Where did you hide the money?
  • Negative Questions

A negative question is a type of question that is structured with an implicit or explicit negator. Negative questions can be misleading because they upturn the typical yes/no response order by requiring a negative answer for affirmation and an affirmative answer for negation. 

Examples of Negative Questions

  • Would you mind dropping by my office later today?
  • Didn’t you visit last week?
  • Leading Questions  

A l eading question is a type of survey question that nudges the respondent towards an already-determined answer. It is highly suggestive in nature and typically consists of biases and unverified assumptions that point toward its premeditated responses. 

Examples of Leading Questions

  • If you enjoyed this service, would you be willing to try out our other packages?
  • Our product met your needs, didn’t it?
Read More: Leading Questions: Definition, Types, and Examples

How to Use Formplus as Online Research Questionnaire Tool  

With Formplus, you can create and administer your online research questionnaire easily. In the form builder, you can add different form fields to your questionnaire and edit these fields to reflect specific research questions for your systematic investigation. 

Here is a step-by-step guide on how to create an online research questionnaire with Formplus: 

  • Sign in to your Formplus accoun t, then click on the “create new form” button in your dashboard to access the Form builder.

a study's research question(s) is/are transferred into

  • In the form builder, add preferred form fields to your online research questionnaire by dragging and dropping them into the form. Add a title to your form in the title block. You can edit form fields by clicking on the “pencil” icon on the right corner of each form field.

online-research-questionnaire

  • Save the form to access the customization section of the builder. Here, you can tweak the appearance of your online research questionnaire by adding background images, changing the form font, and adding your organization’s logo.

formplus-research-question

  • Finally, copy your form link and share it with respondents. You can also use any of the multiple sharing options available.

a study's research question(s) is/are transferred into

Conclusion  

The success of your research starts with framing the right questions to help you collect the most valid and objective responses. Be sure to avoid bad research questions like loaded and negative questions that can be misleading and adversely affect your research data and outcomes. 

Your research questions should clearly reflect the aims and objectives of your systematic investigation while laying emphasis on specific contexts. To help you seamlessly gather responses for your research questions, you can create an online research questionnaire on Formplus.  

Logo

Connect to Formplus, Get Started Now - It's Free!

  • abstract in research papers
  • bad research questions
  • examples of research questions
  • types of research questions
  • busayo.longe

Formplus

You may also like:

Research Summary: What Is It & How To Write One

Introduction A research summary is a requirement during academic research and sometimes you might need to prepare a research summary...

a study's research question(s) is/are transferred into

How to Write a Problem Statement for your Research

Learn how to write problem statements before commencing any research effort. Learn about its structure and explore examples

How to do a Meta Analysis: Methodology, Pros & Cons

In this article, we’ll go through the concept of meta-analysis, what it can be used for, and how you can use it to improve how you...

How to Write An Abstract For Research Papers: Tips & Examples

In this article, we will share some tips for writing an effective abstract, plus samples you can learn from.

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Grad Coach

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

a study's research question(s) is/are transferred into

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

a study's research question(s) is/are transferred into

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Narrative analysis explainer

38 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.53(4); 2010 Aug

Logo of canjsurg

Research questions, hypotheses and objectives

Patricia farrugia.

* Michael G. DeGroote School of Medicine, the

Bradley A. Petrisor

† Division of Orthopaedic Surgery and the

Forough Farrokhyar

‡ Departments of Surgery and

§ Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont

Mohit Bhandari

There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design. Surgeons and clinicians are looking more and more to the literature and clinical trials to guide their practice; as such, it is becoming a responsibility of the clinical research community to attempt to answer questions that are not only well thought out but also clinically relevant. The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently what data will be collected and analyzed. 1

Objectives of this article

In this article, we discuss important considerations in the development of a research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of constructing a good research question and developing hypotheses and research objectives for the successful design of a research study. The following article is divided into 3 sections: research question, research hypothesis and research objectives.

Research question

Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know “where the boundary between current knowledge and ignorance lies.” 1 The challenge in developing an appropriate research question is in determining which clinical uncertainties could or should be studied and also rationalizing the need for their investigation.

Increasing one’s knowledge about the subject of interest can be accomplished in many ways. Appropriate methods include systematically searching the literature, in-depth interviews and focus groups with patients (and proxies) and interviews with experts in the field. In addition, awareness of current trends and technological advances can assist with the development of research questions. 2 It is imperative to understand what has been studied about a topic to date in order to further the knowledge that has been previously gathered on a topic. Indeed, some granting institutions (e.g., Canadian Institute for Health Research) encourage applicants to conduct a systematic review of the available evidence if a recent review does not already exist and preferably a pilot or feasibility study before applying for a grant for a full trial.

In-depth knowledge about a subject may generate a number of questions. It then becomes necessary to ask whether these questions can be answered through one study or if more than one study needed. 1 Additional research questions can be developed, but several basic principles should be taken into consideration. 1 All questions, primary and secondary, should be developed at the beginning and planning stages of a study. Any additional questions should never compromise the primary question because it is the primary research question that forms the basis of the hypothesis and study objectives. It must be kept in mind that within the scope of one study, the presence of a number of research questions will affect and potentially increase the complexity of both the study design and subsequent statistical analyses, not to mention the actual feasibility of answering every question. 1 A sensible strategy is to establish a single primary research question around which to focus the study plan. 3 In a study, the primary research question should be clearly stated at the end of the introduction of the grant proposal, and it usually specifies the population to be studied, the intervention to be implemented and other circumstantial factors. 4

Hulley and colleagues 2 have suggested the use of the FINER criteria in the development of a good research question ( Box 1 ). The FINER criteria highlight useful points that may increase the chances of developing a successful research project. A good research question should specify the population of interest, be of interest to the scientific community and potentially to the public, have clinical relevance and further current knowledge in the field (and of course be compliant with the standards of ethical boards and national research standards).

FINER criteria for a good research question

Adapted with permission from Wolters Kluwer Health. 2

Whereas the FINER criteria outline the important aspects of the question in general, a useful format to use in the development of a specific research question is the PICO format — consider the population (P) of interest, the intervention (I) being studied, the comparison (C) group (or to what is the intervention being compared) and the outcome of interest (O). 3 , 5 , 6 Often timing (T) is added to PICO ( Box 2 ) — that is, “Over what time frame will the study take place?” 1 The PICOT approach helps generate a question that aids in constructing the framework of the study and subsequently in protocol development by alluding to the inclusion and exclusion criteria and identifying the groups of patients to be included. Knowing the specific population of interest, intervention (and comparator) and outcome of interest may also help the researcher identify an appropriate outcome measurement tool. 7 The more defined the population of interest, and thus the more stringent the inclusion and exclusion criteria, the greater the effect on the interpretation and subsequent applicability and generalizability of the research findings. 1 , 2 A restricted study population (and exclusion criteria) may limit bias and increase the internal validity of the study; however, this approach will limit external validity of the study and, thus, the generalizability of the findings to the practical clinical setting. Conversely, a broadly defined study population and inclusion criteria may be representative of practical clinical practice but may increase bias and reduce the internal validity of the study.

PICOT criteria 1

A poorly devised research question may affect the choice of study design, potentially lead to futile situations and, thus, hamper the chance of determining anything of clinical significance, which will then affect the potential for publication. Without devoting appropriate resources to developing the research question, the quality of the study and subsequent results may be compromised. During the initial stages of any research study, it is therefore imperative to formulate a research question that is both clinically relevant and answerable.

Research hypothesis

The primary research question should be driven by the hypothesis rather than the data. 1 , 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple statistical comparisons of groups within the database to find a statistically significant association. This could then lead one to work backward from the data and develop the “question.” This is counterintuitive to the process because the question is asked specifically to then find the answer, thus collecting data along the way (i.e., in a prospective manner). Multiple statistical testing of associations from data previously collected could potentially lead to spuriously positive findings of association through chance alone. 2 Therefore, a good hypothesis must be based on a good research question at the start of a trial and, indeed, drive data collection for the study.

The research or clinical hypothesis is developed from the research question and then the main elements of the study — sampling strategy, intervention (if applicable), comparison and outcome variables — are summarized in a form that establishes the basis for testing, statistical and ultimately clinical significance. 3 For example, in a research study comparing computer-assisted acetabular component insertion versus freehand acetabular component placement in patients in need of total hip arthroplasty, the experimental group would be computer-assisted insertion and the control/conventional group would be free-hand placement. The investigative team would first state a research hypothesis. This could be expressed as a single outcome (e.g., computer-assisted acetabular component placement leads to improved functional outcome) or potentially as a complex/composite outcome; that is, more than one outcome (e.g., computer-assisted acetabular component placement leads to both improved radiographic cup placement and improved functional outcome).

However, when formally testing statistical significance, the hypothesis should be stated as a “null” hypothesis. 2 The purpose of hypothesis testing is to make an inference about the population of interest on the basis of a random sample taken from that population. The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear. The alternate hypothesis would be that there is a difference in mean functional outcome between these techniques. At the end of the study, the null hypothesis is then tested statistically. If the findings of the study are not statistically significant (i.e., there is no difference in functional outcome between the groups in a statistical sense), we cannot reject the null hypothesis, whereas if the findings were significant, we can reject the null hypothesis and accept the alternate hypothesis (i.e., there is a difference in mean functional outcome between the study groups), errors in testing notwithstanding. In other words, hypothesis testing confirms or refutes the statement that the observed findings did not occur by chance alone but rather occurred because there was a true difference in outcomes between these surgical procedures. The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article.

Another important concept inherent in hypothesis testing is whether the hypotheses will be 1-sided or 2-sided. A 2-sided hypothesis states that there is a difference between the experimental group and the control group, but it does not specify in advance the expected direction of the difference. For example, we asked whether there is there an improvement in outcomes with computer-assisted surgery or whether the outcomes worse with computer-assisted surgery. We presented a 2-sided test in the above example because we did not specify the direction of the difference. A 1-sided hypothesis states a specific direction (e.g., there is an improvement in outcomes with computer-assisted surgery). A 2-sided hypothesis should be used unless there is a good justification for using a 1-sided hypothesis. As Bland and Atlman 8 stated, “One-sided hypothesis testing should never be used as a device to make a conventionally nonsignificant difference significant.”

The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study and investigators must adhere to the concept of clinical equipoise. According to this principle, a clinical (or surgical) trial is ethical only if the expert community is uncertain about the relative therapeutic merits of the experimental and control groups being evaluated. 9 It means there must exist an honest and professional disagreement among expert clinicians about the preferred treatment. 9

Designing a research hypothesis is supported by a good research question and will influence the type of research design for the study. Acting on the principles of appropriate hypothesis development, the study can then confidently proceed to the development of the research objective.

Research objective

The primary objective should be coupled with the hypothesis of the study. Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary objective can be stated as follows: this study will compare the functional outcomes of computer-assisted acetabular component insertion versus free-hand placement in patients undergoing total hip arthroplasty. Note that the study objective is an active statement about how the study is going to answer the specific research question. Objectives can (and often do) state exactly which outcome measures are going to be used within their statements. They are important because they not only help guide the development of the protocol and design of study but also play a role in sample size calculations and determining the power of the study. 7 These concepts will be discussed in other articles in this series.

From the surgeon’s point of view, it is important for the study objectives to be focused on outcomes that are important to patients and clinically relevant. For example, the most methodologically sound randomized controlled trial comparing 2 techniques of distal radial fixation would have little or no clinical impact if the primary objective was to determine the effect of treatment A as compared to treatment B on intraoperative fluoroscopy time. However, if the objective was to determine the effect of treatment A as compared to treatment B on patient functional outcome at 1 year, this would have a much more significant impact on clinical decision-making. Second, more meaningful surgeon–patient discussions could ensue, incorporating patient values and preferences with the results from this study. 6 , 7 It is the precise objective and what the investigator is trying to measure that is of clinical relevance in the practical setting.

The following is an example from the literature about the relation between the research question, hypothesis and study objectives:

Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467–71.

Research question: How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?

Research hypothesis: Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).

Objective: To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

The development of the research question is the most important aspect of a research project. A research project can fail if the objectives and hypothesis are poorly focused and underdeveloped. Useful tips for surgical researchers are provided in Box 3 . Designing and developing an appropriate and relevant research question, hypothesis and objectives can be a difficult task. The critical appraisal of the research question used in a study is vital to the application of the findings to clinical practice. Focusing resources, time and dedication to these 3 very important tasks will help to guide a successful research project, influence interpretation of the results and affect future publication efforts.

Tips for developing research questions, hypotheses and objectives for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Develop clear and well-defined primary and secondary (if needed) objectives.
  • Ensure that the research question and objectives are answerable, feasible and clinically relevant.

FINER = feasible, interesting, novel, ethical, relevant; PICOT = population (patients), intervention (for intervention studies only), comparison group, outcome of interest, time.

Competing interests: No funding was received in preparation of this paper. Dr. Bhandari was funded, in part, by a Canada Research Chair, McMaster University.

Sacred Heart University Library

Organizing Academic Research Papers: The Research Problem/Question

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

A research problem is a statement about an area of concern, a condition to be improved, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or in practice that points to the need for meaningful understanding and deliberate investigation. In some social science disciplines the research problem is typically posed in the form of a question. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study and the research questions or hypotheses to follow.
  • Places the problem into a particular context that defines the parameters of what is to be investigated.
  • Provides the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. The "So What?" question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What" question requires a commitment on your part to not only show that you have researched the material, but that you have thought about its significance.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible statements],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question and key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's boundaries or parameters,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [regardless of the type of research, it is important to address the “so what” question by demonstrating that the research is not trivial],
  • Does not have unnecessary jargon; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Castellanos, Susie. Critical Writing and Thinking . The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem. Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements . The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements . The Writing Lab and The OWL. Purdue University.  

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe a situation, state, or existence of a specific phenomenon.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate qualities/characteristics that are connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study
  • A declaration of originality [e.g., mentioning a knowledge void, which would be supported by the literature review]
  • An indication of the central focus of the study, and
  • An explanation of the study's significance or the benefits to be derived from an investigating the problem.

II.  Sources of Problems for Investigation

Identifying a problem to study can be challenging, not because there is a lack of issues that could be investigated, but due to pursuing a goal of formulating a socially relevant and researchable problem statement that is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these three broad sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life in society that the researcher is familiar with. These deductions from human behavior are then fitted within an empirical frame of reference through research. From a theory, the research can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis and hence the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. A review of pertinent literature should include examining research from related disciplines, which can expose you to new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue than any single discipline might provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings increasingly relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, etc., offers the chance to identify practical, “real worl” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Your everyday experiences can give rise to worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society, your community, or in your neighborhood. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can often be derived from an extensive and thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps remain in our understanding of a topic. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied to different study sample [i.e., different groups of people]. Also, authors frequently conclude their studies by noting implications for further research; this can also be a valuable source of problems to investigate.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered and then gradually leads the reader to the more narrow questions you are posing. The statement need not be lengthy but a good research problem should incorporate the following features:

Compelling topic Simple curiosity is not a good enough reason to pursue a research study. The problem that you choose to explore must be important to you and to a larger community you share. The problem chosen must be one that motivates you to address it. Supports multiple perspectives The problem most be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. Researchable It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex  research project and realize that you don't have much to draw on for your research. Choose research problems that can be supported by the resources available to you. Not sure? Seek out help  from a librarian!

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about whereas a problem is something to solve or framed as a question that must be answered.

IV.  Mistakes to Avoid

Beware of circular reasoning . Don’t state that the research problem as simply the absence of the thing you are suggesting. For example, if you propose, "The problem in this community is that it has no hospital."

This only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "so what?" test because it does not reveal the relevance of why you are investigating the problem of having no hospital in the community [e.g., there's a hospital in the community ten miles away] and because the research problem does not elucidate the significance of why one should study the fact that no hospital exists in the community [e.g., that hospital in the community ten miles away has no emergency room].

Choosing and Refining Topics . Writing@CSU. Colorado State University; Ellis, Timothy J. and Yair Levy Nova Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem. Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question . The Writing Center. George Mason University; Invention: Developing a Thesis Statement . The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation . The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements . University College Writing Centre. University of Toronto; Trochim, William M.K. Problem Formulation . Research Methods Knowledge Base. 2006; Thesis and Purpose Statements . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements . The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements . The Writing Lab and The OWL. Purdue University.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • 10 Research Question Examples to Guide Your Research Project

10 Research Question Examples to Guide your Research Project

Published on October 30, 2022 by Shona McCombes . Revised on October 19, 2023.

The research question is one of the most important parts of your research paper , thesis or dissertation . It’s important to spend some time assessing and refining your question before you get started.

The exact form of your question will depend on a few things, such as the length of your project, the type of research you’re conducting, the topic , and the research problem . However, all research questions should be focused, specific, and relevant to a timely social or scholarly issue.

Once you’ve read our guide on how to write a research question , you can use these examples to craft your own.

Note that the design of your research question can depend on what method you are pursuing. Here are a few options for qualitative, quantitative, and statistical research questions.

Other interesting articles

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, October 19). 10 Research Question Examples to Guide your Research Project. Scribbr. Retrieved April 12, 2024, from https://www.scribbr.com/research-process/research-question-examples/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, writing strong research questions | criteria & examples, how to choose a dissertation topic | 8 steps to follow, evaluating sources | methods & examples, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

IMAGES

  1. How to Write a Research Question in 2024: Types, Steps, and Examples

    a study's research question(s) is/are transferred into

  2. How to Write a Good Research Question (w/ Examples)

    a study's research question(s) is/are transferred into

  3. How to Write a Research Question: Types with Best Examples

    a study's research question(s) is/are transferred into

  4. How to Develop a Strong Research Question

    a study's research question(s) is/are transferred into

  5. Research Question: Definition, Types, Examples, Quick Tips

    a study's research question(s) is/are transferred into

  6. How to Develop a Strong Research Question

    a study's research question(s) is/are transferred into

VIDEO

  1. IGCSE Computer Science FLASHCARDS 2

  2. #04: Interview questions and answers for the post of Lec/SS👨‍🏫👩‍🏫 in Statistics

  3. What is research and how to get a position as an undergraduate

  4. What is a research question?

  5. Criteria Of Good Research

  6. Converting Thesis Into Research Paper

COMMENTS

  1. The Research Problem/Question

    Articulation of the study's conceptual boundaries or parameters or limitations, Some generalizability in regards to applicability and bringing results into general use, Conveyance of the study's importance, benefits, and justification [i.e., regardless of the type of research, it is important to demonstrate that the research is not trivial],

  2. Generalizability and Transferability

    From an experimental study to a case study, readers transfer the methods, results, and ideas from the research to their own context. Therefore, a generalizable study can also be transferable. For example, a researcher may generalize the results of a survey of 350 people in a university to the university population as a whole; readers of the ...

  3. Asking the Right Question: Specifying Your Study Question

    It is the basis for your research study and presents the idea or ideas that are to be examined in your study. Everything included in your study must relate to your study question(s) and study objective. It gives information about the patients to be studied, interventions to be compared, and primary outcomes to focus on.

  4. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  5. Identifying your research question

    Identifying your research question. Making informed decisions about what to study, and defining your research question, even within a predetermined field, is critical to a successful research career, and can be one of the hardest challenges for a scientist. Being knowledgeable about the state of your field and up-to-date with recent ...

  6. PDF Research Questions and Hypotheses

    study) Describe the experiences (e.g., phenomenology) Report the stories (e.g., narrative research) Use these more exploratory verbs that are nondirectional rather than directional words that suggest quantitative research, such as "affect," "influence," "impact," "determine," "cause," and "relate.".

  7. Research: Articulating Questions, Generating Hypotheses, and Choosing

    Articulating a clear and concise research question is fundamental to conducting a robust and useful research study. Although "getting stuck into" the data collection is the exciting part of research, this preparation stage is crucial. Clear and concise research questions are needed for a number of reasons. Initially, they are needed to ...

  8. Quiz 3: Identifying a Research Problem

    When beginning a study, research questions are often _____. (Multiple Choice) 4.8/5 (7) Question 12 . Correct Answer: Verified. Access For Free. Choose question tag. ... A study's research question(s) is/are transferred into _____. (Multiple Choice) 4.7/5 (8) Question 15 . Correct Answer: Verified. Access For Free. Choose question tag.

  9. 1.1: The Purpose of Research Questions

    The Purpose of Research Questions. Research questions are very important. Both professional researchers and successful student researchers develop research questions. That's because research questions are more than handy tools; they are essential to the research process. By defining exactly what the researcher is trying to find out, these ...

  10. A Study's Research Question(s) Is/are Transferred into

    Explore our library and get Education Homework Help with various study sets and a huge amount of quizzes and questions. A study's research question (s) is/are transferred into ______. A) the problem statement B) the purpose of the study C) the variables D) the outcomes.

  11. Research

    Ans: A. The conceptual phase (Phase 1) of the research process involves formulating the problem and reviewing the related literature, among other things. Selecting an appropriate research design for the study and finalizing and reviewing the research plan are steps in Phase 2, the design and planning phase.

  12. Research Questions

    Definition: Research questions are the specific questions that guide a research study or inquiry. These questions help to define the scope of the research and provide a clear focus for the study. Research questions are usually developed at the beginning of a research project and are designed to address a particular research problem or objective.

  13. Research Questions: Definitions, Types + [Examples]

    A case study is a qualitative research approach that involves carrying out a detailed investigation into a research subject(s) or variable(s). In the course of a case study, the researcher gathers a range of data from multiple sources of information via different data collection methods, and over a period of time.

  14. Research Questions, Objectives & Aims (+ Examples)

    Research Aims: Examples. True to the name, research aims usually start with the wording "this research aims to…", "this research seeks to…", and so on. For example: "This research aims to explore employee experiences of digital transformation in retail HR.". "This study sets out to assess the interaction between student ...

  15. Research questions, hypotheses and objectives

    Research question. Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know "where the boundary between current ...

  16. The Research Problem/Question

    A research problem is a statement about an area of concern, a condition to be improved, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or in practice that points to the need for meaningful understanding and deliberate investigation. In some social science disciplines the research problem is typically posed in the form of a question.

  17. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  18. (PDF) Research Fundamentals: The Research Question, Outcomes, and

    The study design is also a consequence of the research question, research objectives, phenomena of interest, population, and sampling strategies [2]. These components are integrated in such a way ...

  19. Research questions Flashcards

    1. applied research. A researcher investigates the effect of frequency of position change on healing of decubitus ulcers. The study would be described as: 1. applied research. 2. basic research. 3. descriptive research. 4. phenomenological research. 3. Natural.

  20. What is Research? (Quiz) Flashcards

    Study with Quizlet and memorize flashcards containing terms like A scientific theory must be supported with empirical evidence. T/F, When researchers replicate a study, they are seeking to __________. A. prove that the hypothesis upon which the study was founded is untestable B. develop a new hypothesis C. change the study to provide new results D. support or reject the hypothesis upon which ...

  21. SPED 5305 Quiz 1

    It is qualitative method where researchers interact or observe with study's participants in their real-life environment. The research describes social interactions between in group settings.</p> ... Question 33: A study's research question(s) is/are transferred into _____. *The problem statement . Question 34: Hypothesis stating that there ...

  22. research Flashcards

    Study with Quizlet and memorize flashcards containing terms like What research question fits with predictive research?, A(n) _____ design incorporates a variable that must be pre-existing in subjects because, by the nature of the variable, a researcher cannot ask subjects to assume the behaviors and/or risks that might be potentially harmful., Research questions generally come in two varieties ...

  23. When beginning a study, research questions are often

    When beginning a study, research questions are often guidance for the research process. The research question is a problem that is investigated in a study. For the research question to be posed effectively, it should be concise, clear, focused on one concern, and based on previous research. A research problem is answered with a hypothesis.