Grad Coach

How To Write A Research Paper

Step-By-Step Tutorial With Examples + FREE Template

By: Derek Jansen (MBA) | Expert Reviewer: Dr Eunice Rautenbach | March 2024

For many students, crafting a strong research paper from scratch can feel like a daunting task – and rightly so! In this post, we’ll unpack what a research paper is, what it needs to do , and how to write one – in three easy steps. 🙂 

Overview: Writing A Research Paper

What (exactly) is a research paper.

  • How to write a research paper
  • Stage 1 : Topic & literature search
  • Stage 2 : Structure & outline
  • Stage 3 : Iterative writing
  • Key takeaways

Let’s start by asking the most important question, “ What is a research paper? ”.

Simply put, a research paper is a scholarly written work where the writer (that’s you!) answers a specific question (this is called a research question ) through evidence-based arguments . Evidence-based is the keyword here. In other words, a research paper is different from an essay or other writing assignments that draw from the writer’s personal opinions or experiences. With a research paper, it’s all about building your arguments based on evidence (we’ll talk more about that evidence a little later).

Now, it’s worth noting that there are many different types of research papers , including analytical papers (the type I just described), argumentative papers, and interpretative papers. Here, we’ll focus on analytical papers , as these are some of the most common – but if you’re keen to learn about other types of research papers, be sure to check out the rest of the blog .

With that basic foundation laid, let’s get down to business and look at how to write a research paper .

Research Paper Template

Overview: The 3-Stage Process

While there are, of course, many potential approaches you can take to write a research paper, there are typically three stages to the writing process. So, in this tutorial, we’ll present a straightforward three-step process that we use when working with students at Grad Coach.

These three steps are:

  • Finding a research topic and reviewing the existing literature
  • Developing a provisional structure and outline for your paper, and
  • Writing up your initial draft and then refining it iteratively

Let’s dig into each of these.

Need a helping hand?

writing a science research paper

Step 1: Find a topic and review the literature

As we mentioned earlier, in a research paper, you, as the researcher, will try to answer a question . More specifically, that’s called a research question , and it sets the direction of your entire paper. What’s important to understand though is that you’ll need to answer that research question with the help of high-quality sources – for example, journal articles, government reports, case studies, and so on. We’ll circle back to this in a minute.

The first stage of the research process is deciding on what your research question will be and then reviewing the existing literature (in other words, past studies and papers) to see what they say about that specific research question. In some cases, your professor may provide you with a predetermined research question (or set of questions). However, in many cases, you’ll need to find your own research question within a certain topic area.

Finding a strong research question hinges on identifying a meaningful research gap – in other words, an area that’s lacking in existing research. There’s a lot to unpack here, so if you wanna learn more, check out the plain-language explainer video below.

Once you’ve figured out which question (or questions) you’ll attempt to answer in your research paper, you’ll need to do a deep dive into the existing literature – this is called a “ literature search ”. Again, there are many ways to go about this, but your most likely starting point will be Google Scholar .

If you’re new to Google Scholar, think of it as Google for the academic world. You can start by simply entering a few different keywords that are relevant to your research question and it will then present a host of articles for you to review. What you want to pay close attention to here is the number of citations for each paper – the more citations a paper has, the more credible it is (generally speaking – there are some exceptions, of course).

how to use google scholar

Ideally, what you’re looking for are well-cited papers that are highly relevant to your topic. That said, keep in mind that citations are a cumulative metric , so older papers will often have more citations than newer papers – just because they’ve been around for longer. So, don’t fixate on this metric in isolation – relevance and recency are also very important.

Beyond Google Scholar, you’ll also definitely want to check out academic databases and aggregators such as Science Direct, PubMed, JStor and so on. These will often overlap with the results that you find in Google Scholar, but they can also reveal some hidden gems – so, be sure to check them out.

Once you’ve worked your way through all the literature, you’ll want to catalogue all this information in some sort of spreadsheet so that you can easily recall who said what, when and within what context. If you’d like, we’ve got a free literature spreadsheet that helps you do exactly that.

Don’t fixate on an article’s citation count in isolation - relevance (to your research question) and recency are also very important.

Step 2: Develop a structure and outline

With your research question pinned down and your literature digested and catalogued, it’s time to move on to planning your actual research paper .

It might sound obvious, but it’s really important to have some sort of rough outline in place before you start writing your paper. So often, we see students eagerly rushing into the writing phase, only to land up with a disjointed research paper that rambles on in multiple

Now, the secret here is to not get caught up in the fine details . Realistically, all you need at this stage is a bullet-point list that describes (in broad strokes) what you’ll discuss and in what order. It’s also useful to remember that you’re not glued to this outline – in all likelihood, you’ll chop and change some sections once you start writing, and that’s perfectly okay. What’s important is that you have some sort of roadmap in place from the start.

You need to have a rough outline in place before you start writing your paper - or you’ll end up with a disjointed research paper that rambles on.

At this stage you might be wondering, “ But how should I structure my research paper? ”. Well, there’s no one-size-fits-all solution here, but in general, a research paper will consist of a few relatively standardised components:

  • Introduction
  • Literature review
  • Methodology

Let’s take a look at each of these.

First up is the introduction section . As the name suggests, the purpose of the introduction is to set the scene for your research paper. There are usually (at least) four ingredients that go into this section – these are the background to the topic, the research problem and resultant research question , and the justification or rationale. If you’re interested, the video below unpacks the introduction section in more detail. 

The next section of your research paper will typically be your literature review . Remember all that literature you worked through earlier? Well, this is where you’ll present your interpretation of all that content . You’ll do this by writing about recent trends, developments, and arguments within the literature – but more specifically, those that are relevant to your research question . The literature review can oftentimes seem a little daunting, even to seasoned researchers, so be sure to check out our extensive collection of literature review content here .

With the introduction and lit review out of the way, the next section of your paper is the research methodology . In a nutshell, the methodology section should describe to your reader what you did (beyond just reviewing the existing literature) to answer your research question. For example, what data did you collect, how did you collect that data, how did you analyse that data and so on? For each choice, you’ll also need to justify why you chose to do it that way, and what the strengths and weaknesses of your approach were.

Now, it’s worth mentioning that for some research papers, this aspect of the project may be a lot simpler . For example, you may only need to draw on secondary sources (in other words, existing data sets). In some cases, you may just be asked to draw your conclusions from the literature search itself (in other words, there may be no data analysis at all). But, if you are required to collect and analyse data, you’ll need to pay a lot of attention to the methodology section. The video below provides an example of what the methodology section might look like.

By this stage of your paper, you will have explained what your research question is, what the existing literature has to say about that question, and how you analysed additional data to try to answer your question. So, the natural next step is to present your analysis of that data . This section is usually called the “results” or “analysis” section and this is where you’ll showcase your findings.

Depending on your school’s requirements, you may need to present and interpret the data in one section – or you might split the presentation and the interpretation into two sections. In the latter case, your “results” section will just describe the data, and the “discussion” is where you’ll interpret that data and explicitly link your analysis back to your research question. If you’re not sure which approach to take, check in with your professor or take a look at past papers to see what the norms are for your programme.

Alright – once you’ve presented and discussed your results, it’s time to wrap it up . This usually takes the form of the “ conclusion ” section. In the conclusion, you’ll need to highlight the key takeaways from your study and close the loop by explicitly answering your research question. Again, the exact requirements here will vary depending on your programme (and you may not even need a conclusion section at all) – so be sure to check with your professor if you’re unsure.

Step 3: Write and refine

Finally, it’s time to get writing. All too often though, students hit a brick wall right about here… So, how do you avoid this happening to you?

Well, there’s a lot to be said when it comes to writing a research paper (or any sort of academic piece), but we’ll share three practical tips to help you get started.

First and foremost , it’s essential to approach your writing as an iterative process. In other words, you need to start with a really messy first draft and then polish it over multiple rounds of editing. Don’t waste your time trying to write a perfect research paper in one go. Instead, take the pressure off yourself by adopting an iterative approach.

Secondly , it’s important to always lean towards critical writing , rather than descriptive writing. What does this mean? Well, at the simplest level, descriptive writing focuses on the “ what ”, while critical writing digs into the “ so what ” – in other words, the implications . If you’re not familiar with these two types of writing, don’t worry! You can find a plain-language explanation here.

Last but not least, you’ll need to get your referencing right. Specifically, you’ll need to provide credible, correctly formatted citations for the statements you make. We see students making referencing mistakes all the time and it costs them dearly. The good news is that you can easily avoid this by using a simple reference manager . If you don’t have one, check out our video about Mendeley, an easy (and free) reference management tool that you can start using today.

Recap: Key Takeaways

We’ve covered a lot of ground here. To recap, the three steps to writing a high-quality research paper are:

  • To choose a research question and review the literature
  • To plan your paper structure and draft an outline
  • To take an iterative approach to writing, focusing on critical writing and strong referencing

Remember, this is just a b ig-picture overview of the research paper development process and there’s a lot more nuance to unpack. So, be sure to grab a copy of our free research paper template to learn more about how to write a research paper.

You Might Also Like:

Referencing in Word

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER FEATURE
  • 28 February 2018
  • Correction 16 March 2018

How to write a first-class paper

  • Virginia Gewin 0

Virginia Gewin is a freelance writer in Portland, Oregon.

You can also search for this author in PubMed   Google Scholar

Manuscripts may have a rigidly defined structure, but there’s still room to tell a compelling story — one that clearly communicates the science and is a pleasure to read. Scientist-authors and editors debate the importance and meaning of creativity and offer tips on how to write a top paper.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

Nature 555 , 129-130 (2018)

doi: https://doi.org/10.1038/d41586-018-02404-4

Interviews have been edited for clarity and length.

Updates & Corrections

Correction 16 March 2018 : This article should have made clear that Altmetric is part of Digital Science, a company owned by Holtzbrinck Publishing Group, which is also the majority shareholder in Nature’s publisher, Springer Nature. Nature Research Editing Services is also owned by Springer Nature.

Related Articles

writing a science research paper

Brazil’s plummeting graduate enrolments hint at declining interest in academic science careers

Career News 21 MAY 24

How religious scientists balance work and faith

How religious scientists balance work and faith

Career Feature 20 MAY 24

How to set up your new lab space

How to set up your new lab space

Career Column 20 MAY 24

Egypt is building a $1-billion mega-museum. Will it bring Egyptology home?

Egypt is building a $1-billion mega-museum. Will it bring Egyptology home?

News Feature 22 MAY 24

Pay researchers to spot errors in published papers

Pay researchers to spot errors in published papers

World View 21 MAY 24

Harassment of scientists is surging — institutions aren’t sure how to help

Harassment of scientists is surging — institutions aren’t sure how to help

News Feature 21 MAY 24

Editor (Structural biology, experimental and/or computational biophysics)

We are looking for an Editor to join Nature Communications, the leading multidisciplinary OA journal, publishing high-quality scientific research.

London or New York - hybrid working model.

Springer Nature Ltd

writing a science research paper

Wissenschaftliche/r Mitarbeiter/in - Quantencomputing mit gespeicherten Ionen

Wissenschaftliche/r Mitarbeiter/in - Quantencomputing mit gespeicherten Ionen Bereich: Fakultät IV - Naturwissenschaftlich-Technische Fakultät | St...

Siegen, Nordrhein-Westfalen (DE)

Universität Siegen

writing a science research paper

Wissenschaftliche/r Mitarbeiter/in (PostDoc) - Quantencomputing mit gespeicherten Ionen

Wissenschaftliche/r Mitarbeiter/in (PostDoc) - Quantencomputing mit gespeicherten Ionen Bereich: Fakultät IV - Naturwissenschaftlich-Technische Fak...

writing a science research paper

Professor Helminthology

Excellent track record on the biology and immunobiology of zoonotic helminths and co-infections, with a strong scientific network.

Antwerp, New York

Institute of Tropical Medicine

writing a science research paper

Assistant Professor in Plant Biology

The Plant Science Program in the Biological and Environmental Science and Engineering (BESE) Division at King Abdullah University of Science and Te...

Saudi Arabia (SA)

King Abdullah University of Science and Technology

writing a science research paper

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections

Welcome to the PLOS Writing Center

Your source for scientific writing & publishing essentials.

A collection of free, practical guides and hands-on resources for authors looking to improve their scientific publishing skillset.

ARTICLE-WRITING ESSENTIALS

Your title is the first thing anyone who reads your article is going to see, and for many it will be where they stop reading. Learn how to write a title that helps readers find your article, draws your audience in and sets the stage for your research!

The abstract is your chance to let your readers know what they can expect from your article. Learn how to write a clear, and concise abstract that will keep your audience reading.

A clear methods section impacts editorial evaluation and readers’ understanding, and is also the backbone of transparency and replicability. Learn what to include in your methods section, and how much detail is appropriate.

In many fields, a statistical analysis forms the heart of both the methods and results sections of a manuscript. Learn how to report statistical analyses, and what other context is important for publication success and future reproducibility.

The discussion section contains the results and outcomes of a study. An effective discussion informs readers what can be learned from your experiment and provides context for the results.

Ensuring your manuscript is well-written makes it easier for editors, reviewers and readers to understand your work. Avoiding language errors can help accelerate review and minimize delays in the publication of your research.

The PLOS Writing Toolbox

Delivered to your inbox every two weeks, the Writing Toolbox features practical advice and tools you can use to prepare a research manuscript for submission success and build your scientific writing skillset. 

Discover how to navigate the peer review and publishing process, beyond writing your article.

The path to publication can be unsettling when you’re unsure what’s happening with your paper. Learn about staple journal workflows to see the detailed steps required for ensuring a rigorous and ethical publication.

Reputable journals screen for ethics at submission—and inability to pass ethics checks is one of the most common reasons for rejection. Unfortunately, once a study has begun, it’s often too late to secure the requisite ethical reviews and clearances. Learn how to prepare for publication success by ensuring your study meets all ethical requirements before work begins.

From preregistration, to preprints, to publication—learn how and when to share your study.

How you store your data matters. Even after you publish your article, your data needs to be accessible and useable for the long term so that other researchers can continue building on your work. Good data management practices make your data discoverable and easy to use, promote a strong foundation for reproducibility and increase your likelihood of citations.

You’ve just spent months completing your study, writing up the results and submitting to your top-choice journal. Now the feedback is in and it’s time to revise. Set out a clear plan for your response to keep yourself on-track and ensure edits don’t fall through the cracks.

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher.

Are you actively preparing a submission for a PLOS journal? Select the relevant journal below for more detailed guidelines. 

How to Write an Article  

Share the lessons of the Writing Center in a live, interactive training.

Access tried-and-tested training modules, complete with slides and talking points, workshop activities, and more.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Yale J Biol Med
  • v.84(3); 2011 Sep

Logo of yjbm

Focus: Education — Career Advice

How to write your first research paper.

Writing a research manuscript is an intimidating process for many novice writers in the sciences. One of the stumbling blocks is the beginning of the process and creating the first draft. This paper presents guidelines on how to initiate the writing process and draft each section of a research manuscript. The paper discusses seven rules that allow the writer to prepare a well-structured and comprehensive manuscript for a publication submission. In addition, the author lists different strategies for successful revision. Each of those strategies represents a step in the revision process and should help the writer improve the quality of the manuscript. The paper could be considered a brief manual for publication.

It is late at night. You have been struggling with your project for a year. You generated an enormous amount of interesting data. Your pipette feels like an extension of your hand, and running western blots has become part of your daily routine, similar to brushing your teeth. Your colleagues think you are ready to write a paper, and your lab mates tease you about your “slow” writing progress. Yet days pass, and you cannot force yourself to sit down to write. You have not written anything for a while (lab reports do not count), and you feel you have lost your stamina. How does the writing process work? How can you fit your writing into a daily schedule packed with experiments? What section should you start with? What distinguishes a good research paper from a bad one? How should you revise your paper? These and many other questions buzz in your head and keep you stressed. As a result, you procrastinate. In this paper, I will discuss the issues related to the writing process of a scientific paper. Specifically, I will focus on the best approaches to start a scientific paper, tips for writing each section, and the best revision strategies.

1. Schedule your writing time in Outlook

Whether you have written 100 papers or you are struggling with your first, starting the process is the most difficult part unless you have a rigid writing schedule. Writing is hard. It is a very difficult process of intense concentration and brain work. As stated in Hayes’ framework for the study of writing: “It is a generative activity requiring motivation, and it is an intellectual activity requiring cognitive processes and memory” [ 1 ]. In his book How to Write a Lot: A Practical Guide to Productive Academic Writing , Paul Silvia says that for some, “it’s easier to embalm the dead than to write an article about it” [ 2 ]. Just as with any type of hard work, you will not succeed unless you practice regularly. If you have not done physical exercises for a year, only regular workouts can get you into good shape again. The same kind of regular exercises, or I call them “writing sessions,” are required to be a productive author. Choose from 1- to 2-hour blocks in your daily work schedule and consider them as non-cancellable appointments. When figuring out which blocks of time will be set for writing, you should select the time that works best for this type of work. For many people, mornings are more productive. One Yale University graduate student spent a semester writing from 8 a.m. to 9 a.m. when her lab was empty. At the end of the semester, she was amazed at how much she accomplished without even interrupting her regular lab hours. In addition, doing the hardest task first thing in the morning contributes to the sense of accomplishment during the rest of the day. This positive feeling spills over into our work and life and has a very positive effect on our overall attitude.

Rule 1: Create regular time blocks for writing as appointments in your calendar and keep these appointments.

2. start with an outline.

Now that you have scheduled time, you need to decide how to start writing. The best strategy is to start with an outline. This will not be an outline that you are used to, with Roman numerals for each section and neat parallel listing of topic sentences and supporting points. This outline will be similar to a template for your paper. Initially, the outline will form a structure for your paper; it will help generate ideas and formulate hypotheses. Following the advice of George M. Whitesides, “. . . start with a blank piece of paper, and write down, in any order, all important ideas that occur to you concerning the paper” [ 3 ]. Use Table 1 as a starting point for your outline. Include your visuals (figures, tables, formulas, equations, and algorithms), and list your findings. These will constitute the first level of your outline, which will eventually expand as you elaborate.

The next stage is to add context and structure. Here you will group all your ideas into sections: Introduction, Methods, Results, and Discussion/Conclusion ( Table 2 ). This step will help add coherence to your work and sift your ideas.

Now that you have expanded your outline, you are ready for the next step: discussing the ideas for your paper with your colleagues and mentor. Many universities have a writing center where graduate students can schedule individual consultations and receive assistance with their paper drafts. Getting feedback during early stages of your draft can save a lot of time. Talking through ideas allows people to conceptualize and organize thoughts to find their direction without wasting time on unnecessary writing. Outlining is the most effective way of communicating your ideas and exchanging thoughts. Moreover, it is also the best stage to decide to which publication you will submit the paper. Many people come up with three choices and discuss them with their mentors and colleagues. Having a list of journal priorities can help you quickly resubmit your paper if your paper is rejected.

Rule 2: Create a detailed outline and discuss it with your mentor and peers.

3. continue with drafts.

After you get enough feedback and decide on the journal you will submit to, the process of real writing begins. Copy your outline into a separate file and expand on each of the points, adding data and elaborating on the details. When you create the first draft, do not succumb to the temptation of editing. Do not slow down to choose a better word or better phrase; do not halt to improve your sentence structure. Pour your ideas into the paper and leave revision and editing for later. As Paul Silvia explains, “Revising while you generate text is like drinking decaffeinated coffee in the early morning: noble idea, wrong time” [ 2 ].

Many students complain that they are not productive writers because they experience writer’s block. Staring at an empty screen is frustrating, but your screen is not really empty: You have a template of your article, and all you need to do is fill in the blanks. Indeed, writer’s block is a logical fallacy for a scientist ― it is just an excuse to procrastinate. When scientists start writing a research paper, they already have their files with data, lab notes with materials and experimental designs, some visuals, and tables with results. All they need to do is scrutinize these pieces and put them together into a comprehensive paper.

3.1. Starting with Materials and Methods

If you still struggle with starting a paper, then write the Materials and Methods section first. Since you have all your notes, it should not be problematic for you to describe the experimental design and procedures. Your most important goal in this section is to be as explicit as possible by providing enough detail and references. In the end, the purpose of this section is to allow other researchers to evaluate and repeat your work. So do not run into the same problems as the writers of the sentences in (1):

1a. Bacteria were pelleted by centrifugation. 1b. To isolate T cells, lymph nodes were collected.

As you can see, crucial pieces of information are missing: the speed of centrifuging your bacteria, the time, and the temperature in (1a); the source of lymph nodes for collection in (b). The sentences can be improved when information is added, as in (2a) and (2b), respectfully:

2a. Bacteria were pelleted by centrifugation at 3000g for 15 min at 25°C. 2b. To isolate T cells, mediastinal and mesenteric lymph nodes from Balb/c mice were collected at day 7 after immunization with ovabumin.

If your method has previously been published and is well-known, then you should provide only the literature reference, as in (3a). If your method is unpublished, then you need to make sure you provide all essential details, as in (3b).

3a. Stem cells were isolated, according to Johnson [23]. 3b. Stem cells were isolated using biotinylated carbon nanotubes coated with anti-CD34 antibodies.

Furthermore, cohesion and fluency are crucial in this section. One of the malpractices resulting in disrupted fluency is switching from passive voice to active and vice versa within the same paragraph, as shown in (4). This switching misleads and distracts the reader.

4. Behavioral computer-based experiments of Study 1 were programmed by using E-Prime. We took ratings of enjoyment, mood, and arousal as the patients listened to preferred pleasant music and unpreferred music by using Visual Analogue Scales (SI Methods). The preferred and unpreferred status of the music was operationalized along a continuum of pleasantness [ 4 ].

The problem with (4) is that the reader has to switch from the point of view of the experiment (passive voice) to the point of view of the experimenter (active voice). This switch causes confusion about the performer of the actions in the first and the third sentences. To improve the coherence and fluency of the paragraph above, you should be consistent in choosing the point of view: first person “we” or passive voice [ 5 ]. Let’s consider two revised examples in (5).

5a. We programmed behavioral computer-based experiments of Study 1 by using E-Prime. We took ratings of enjoyment, mood, and arousal by using Visual Analogue Scales (SI Methods) as the patients listened to preferred pleasant music and unpreferred music. We operationalized the preferred and unpreferred status of the music along a continuum of pleasantness. 5b. Behavioral computer-based experiments of Study 1 were programmed by using E-Prime. Ratings of enjoyment, mood, and arousal were taken as the patients listened to preferred pleasant music and unpreferred music by using Visual Analogue Scales (SI Methods). The preferred and unpreferred status of the music was operationalized along a continuum of pleasantness.

If you choose the point of view of the experimenter, then you may end up with repetitive “we did this” sentences. For many readers, paragraphs with sentences all beginning with “we” may also sound disruptive. So if you choose active sentences, you need to keep the number of “we” subjects to a minimum and vary the beginnings of the sentences [ 6 ].

Interestingly, recent studies have reported that the Materials and Methods section is the only section in research papers in which passive voice predominantly overrides the use of the active voice [ 5 , 7 , 8 , 9 ]. For example, Martínez shows a significant drop in active voice use in the Methods sections based on the corpus of 1 million words of experimental full text research articles in the biological sciences [ 7 ]. According to the author, the active voice patterned with “we” is used only as a tool to reveal personal responsibility for the procedural decisions in designing and performing experimental work. This means that while all other sections of the research paper use active voice, passive voice is still the most predominant in Materials and Methods sections.

Writing Materials and Methods sections is a meticulous and time consuming task requiring extreme accuracy and clarity. This is why when you complete your draft, you should ask for as much feedback from your colleagues as possible. Numerous readers of this section will help you identify the missing links and improve the technical style of this section.

Rule 3: Be meticulous and accurate in describing the Materials and Methods. Do not change the point of view within one paragraph.

3.2. writing results section.

For many authors, writing the Results section is more intimidating than writing the Materials and Methods section . If people are interested in your paper, they are interested in your results. That is why it is vital to use all your writing skills to objectively present your key findings in an orderly and logical sequence using illustrative materials and text.

Your Results should be organized into different segments or subsections where each one presents the purpose of the experiment, your experimental approach, data including text and visuals (tables, figures, schematics, algorithms, and formulas), and data commentary. For most journals, your data commentary will include a meaningful summary of the data presented in the visuals and an explanation of the most significant findings. This data presentation should not repeat the data in the visuals, but rather highlight the most important points. In the “standard” research paper approach, your Results section should exclude data interpretation, leaving it for the Discussion section. However, interpretations gradually and secretly creep into research papers: “Reducing the data, generalizing from the data, and highlighting scientific cases are all highly interpretive processes. It should be clear by now that we do not let the data speak for themselves in research reports; in summarizing our results, we interpret them for the reader” [ 10 ]. As a result, many journals including the Journal of Experimental Medicine and the Journal of Clinical Investigation use joint Results/Discussion sections, where results are immediately followed by interpretations.

Another important aspect of this section is to create a comprehensive and supported argument or a well-researched case. This means that you should be selective in presenting data and choose only those experimental details that are essential for your reader to understand your findings. You might have conducted an experiment 20 times and collected numerous records, but this does not mean that you should present all those records in your paper. You need to distinguish your results from your data and be able to discard excessive experimental details that could distract and confuse the reader. However, creating a picture or an argument should not be confused with data manipulation or falsification, which is a willful distortion of data and results. If some of your findings contradict your ideas, you have to mention this and find a plausible explanation for the contradiction.

In addition, your text should not include irrelevant and peripheral information, including overview sentences, as in (6).

6. To show our results, we first introduce all components of experimental system and then describe the outcome of infections.

Indeed, wordiness convolutes your sentences and conceals your ideas from readers. One common source of wordiness is unnecessary intensifiers. Adverbial intensifiers such as “clearly,” “essential,” “quite,” “basically,” “rather,” “fairly,” “really,” and “virtually” not only add verbosity to your sentences, but also lower your results’ credibility. They appeal to the reader’s emotions but lower objectivity, as in the common examples in (7):

7a. Table 3 clearly shows that … 7b. It is obvious from figure 4 that …

Another source of wordiness is nominalizations, i.e., nouns derived from verbs and adjectives paired with weak verbs including “be,” “have,” “do,” “make,” “cause,” “provide,” and “get” and constructions such as “there is/are.”

8a. We tested the hypothesis that there is a disruption of membrane asymmetry. 8b. In this paper we provide an argument that stem cells repopulate injured organs.

In the sentences above, the abstract nominalizations “disruption” and “argument” do not contribute to the clarity of the sentences, but rather clutter them with useless vocabulary that distracts from the meaning. To improve your sentences, avoid unnecessary nominalizations and change passive verbs and constructions into active and direct sentences.

9a. We tested the hypothesis that the membrane asymmetry is disrupted. 9b. In this paper we argue that stem cells repopulate injured organs.

Your Results section is the heart of your paper, representing a year or more of your daily research. So lead your reader through your story by writing direct, concise, and clear sentences.

Rule 4: Be clear, concise, and objective in describing your Results.

3.3. now it is time for your introduction.

Now that you are almost half through drafting your research paper, it is time to update your outline. While describing your Methods and Results, many of you diverged from the original outline and re-focused your ideas. So before you move on to create your Introduction, re-read your Methods and Results sections and change your outline to match your research focus. The updated outline will help you review the general picture of your paper, the topic, the main idea, and the purpose, which are all important for writing your introduction.

The best way to structure your introduction is to follow the three-move approach shown in Table 3 .

Adapted from Swales and Feak [ 11 ].

The moves and information from your outline can help to create your Introduction efficiently and without missing steps. These moves are traffic signs that lead the reader through the road of your ideas. Each move plays an important role in your paper and should be presented with deep thought and care. When you establish the territory, you place your research in context and highlight the importance of your research topic. By finding the niche, you outline the scope of your research problem and enter the scientific dialogue. The final move, “occupying the niche,” is where you explain your research in a nutshell and highlight your paper’s significance. The three moves allow your readers to evaluate their interest in your paper and play a significant role in the paper review process, determining your paper reviewers.

Some academic writers assume that the reader “should follow the paper” to find the answers about your methodology and your findings. As a result, many novice writers do not present their experimental approach and the major findings, wrongly believing that the reader will locate the necessary information later while reading the subsequent sections [ 5 ]. However, this “suspense” approach is not appropriate for scientific writing. To interest the reader, scientific authors should be direct and straightforward and present informative one-sentence summaries of the results and the approach.

Another problem is that writers understate the significance of the Introduction. Many new researchers mistakenly think that all their readers understand the importance of the research question and omit this part. However, this assumption is faulty because the purpose of the section is not to evaluate the importance of the research question in general. The goal is to present the importance of your research contribution and your findings. Therefore, you should be explicit and clear in describing the benefit of the paper.

The Introduction should not be long. Indeed, for most journals, this is a very brief section of about 250 to 600 words, but it might be the most difficult section due to its importance.

Rule 5: Interest your reader in the Introduction section by signalling all its elements and stating the novelty of the work.

3.4. discussion of the results.

For many scientists, writing a Discussion section is as scary as starting a paper. Most of the fear comes from the variation in the section. Since every paper has its unique results and findings, the Discussion section differs in its length, shape, and structure. However, some general principles of writing this section still exist. Knowing these rules, or “moves,” can change your attitude about this section and help you create a comprehensive interpretation of your results.

The purpose of the Discussion section is to place your findings in the research context and “to explain the meaning of the findings and why they are important, without appearing arrogant, condescending, or patronizing” [ 11 ]. The structure of the first two moves is almost a mirror reflection of the one in the Introduction. In the Introduction, you zoom in from general to specific and from the background to your research question; in the Discussion section, you zoom out from the summary of your findings to the research context, as shown in Table 4 .

Adapted from Swales and Feak and Hess [ 11 , 12 ].

The biggest challenge for many writers is the opening paragraph of the Discussion section. Following the moves in Table 1 , the best choice is to start with the study’s major findings that provide the answer to the research question in your Introduction. The most common starting phrases are “Our findings demonstrate . . .,” or “In this study, we have shown that . . .,” or “Our results suggest . . .” In some cases, however, reminding the reader about the research question or even providing a brief context and then stating the answer would make more sense. This is important in those cases where the researcher presents a number of findings or where more than one research question was presented. Your summary of the study’s major findings should be followed by your presentation of the importance of these findings. One of the most frequent mistakes of the novice writer is to assume the importance of his findings. Even if the importance is clear to you, it may not be obvious to your reader. Digesting the findings and their importance to your reader is as crucial as stating your research question.

Another useful strategy is to be proactive in the first move by predicting and commenting on the alternative explanations of the results. Addressing potential doubts will save you from painful comments about the wrong interpretation of your results and will present you as a thoughtful and considerate researcher. Moreover, the evaluation of the alternative explanations might help you create a logical step to the next move of the discussion section: the research context.

The goal of the research context move is to show how your findings fit into the general picture of the current research and how you contribute to the existing knowledge on the topic. This is also the place to discuss any discrepancies and unexpected findings that may otherwise distort the general picture of your paper. Moreover, outlining the scope of your research by showing the limitations, weaknesses, and assumptions is essential and adds modesty to your image as a scientist. However, make sure that you do not end your paper with the problems that override your findings. Try to suggest feasible explanations and solutions.

If your submission does not require a separate Conclusion section, then adding another paragraph about the “take-home message” is a must. This should be a general statement reiterating your answer to the research question and adding its scientific implications, practical application, or advice.

Just as in all other sections of your paper, the clear and precise language and concise comprehensive sentences are vital. However, in addition to that, your writing should convey confidence and authority. The easiest way to illustrate your tone is to use the active voice and the first person pronouns. Accompanied by clarity and succinctness, these tools are the best to convince your readers of your point and your ideas.

Rule 6: Present the principles, relationships, and generalizations in a concise and convincing tone.

4. choosing the best working revision strategies.

Now that you have created the first draft, your attitude toward your writing should have improved. Moreover, you should feel more confident that you are able to accomplish your project and submit your paper within a reasonable timeframe. You also have worked out your writing schedule and followed it precisely. Do not stop ― you are only at the midpoint from your destination. Just as the best and most precious diamond is no more than an unattractive stone recognized only by trained professionals, your ideas and your results may go unnoticed if they are not polished and brushed. Despite your attempts to present your ideas in a logical and comprehensive way, first drafts are frequently a mess. Use the advice of Paul Silvia: “Your first drafts should sound like they were hastily translated from Icelandic by a non-native speaker” [ 2 ]. The degree of your success will depend on how you are able to revise and edit your paper.

The revision can be done at the macrostructure and the microstructure levels [ 13 ]. The macrostructure revision includes the revision of the organization, content, and flow. The microstructure level includes individual words, sentence structure, grammar, punctuation, and spelling.

The best way to approach the macrostructure revision is through the outline of the ideas in your paper. The last time you updated your outline was before writing the Introduction and the Discussion. Now that you have the beginning and the conclusion, you can take a bird’s-eye view of the whole paper. The outline will allow you to see if the ideas of your paper are coherently structured, if your results are logically built, and if the discussion is linked to the research question in the Introduction. You will be able to see if something is missing in any of the sections or if you need to rearrange your information to make your point.

The next step is to revise each of the sections starting from the beginning. Ideally, you should limit yourself to working on small sections of about five pages at a time [ 14 ]. After these short sections, your eyes get used to your writing and your efficiency in spotting problems decreases. When reading for content and organization, you should control your urge to edit your paper for sentence structure and grammar and focus only on the flow of your ideas and logic of your presentation. Experienced researchers tend to make almost three times the number of changes to meaning than novice writers [ 15 , 16 ]. Revising is a difficult but useful skill, which academic writers obtain with years of practice.

In contrast to the macrostructure revision, which is a linear process and is done usually through a detailed outline and by sections, microstructure revision is a non-linear process. While the goal of the macrostructure revision is to analyze your ideas and their logic, the goal of the microstructure editing is to scrutinize the form of your ideas: your paragraphs, sentences, and words. You do not need and are not recommended to follow the order of the paper to perform this type of revision. You can start from the end or from different sections. You can even revise by reading sentences backward, sentence by sentence and word by word.

One of the microstructure revision strategies frequently used during writing center consultations is to read the paper aloud [ 17 ]. You may read aloud to yourself, to a tape recorder, or to a colleague or friend. When reading and listening to your paper, you are more likely to notice the places where the fluency is disrupted and where you stumble because of a very long and unclear sentence or a wrong connector.

Another revision strategy is to learn your common errors and to do a targeted search for them [ 13 ]. All writers have a set of problems that are specific to them, i.e., their writing idiosyncrasies. Remembering these problems is as important for an academic writer as remembering your friends’ birthdays. Create a list of these idiosyncrasies and run a search for these problems using your word processor. If your problem is demonstrative pronouns without summary words, then search for “this/these/those” in your text and check if you used the word appropriately. If you have a problem with intensifiers, then search for “really” or “very” and delete them from the text. The same targeted search can be done to eliminate wordiness. Searching for “there is/are” or “and” can help you avoid the bulky sentences.

The final strategy is working with a hard copy and a pencil. Print a double space copy with font size 14 and re-read your paper in several steps. Try reading your paper line by line with the rest of the text covered with a piece of paper. When you are forced to see only a small portion of your writing, you are less likely to get distracted and are more likely to notice problems. You will end up spotting more unnecessary words, wrongly worded phrases, or unparallel constructions.

After you apply all these strategies, you are ready to share your writing with your friends, colleagues, and a writing advisor in the writing center. Get as much feedback as you can, especially from non-specialists in your field. Patiently listen to what others say to you ― you are not expected to defend your writing or explain what you wanted to say. You may decide what you want to change and how after you receive the feedback and sort it in your head. Even though some researchers make the revision an endless process and can hardly stop after a 14th draft; having from five to seven drafts of your paper is a norm in the sciences. If you can’t stop revising, then set a deadline for yourself and stick to it. Deadlines always help.

Rule 7: Revise your paper at the macrostructure and the microstructure level using different strategies and techniques. Receive feedback and revise again.

5. it is time to submit.

It is late at night again. You are still in your lab finishing revisions and getting ready to submit your paper. You feel happy ― you have finally finished a year’s worth of work. You will submit your paper tomorrow, and regardless of the outcome, you know that you can do it. If one journal does not take your paper, you will take advantage of the feedback and resubmit again. You will have a publication, and this is the most important achievement.

What is even more important is that you have your scheduled writing time that you are going to keep for your future publications, for reading and taking notes, for writing grants, and for reviewing papers. You are not going to lose stamina this time, and you will become a productive scientist. But for now, let’s celebrate the end of the paper.

  • Hayes JR. In: The Science of Writing: Theories, Methods, Individual Differences, and Applications. Levy CM, Ransdell SE, editors. Mahwah, NJ: Lawrence Erlbaum; 1996. A new framework for understanding cognition and affect in writing; pp. 1–28. [ Google Scholar ]
  • Silvia PJ. How to Write a Lot. Washington, DC: American Psychological Association; 2007. [ Google Scholar ]
  • Whitesides GM. Whitesides’ Group: Writing a Paper. Adv Mater. 2004; 16 (15):1375–1377. [ Google Scholar ]
  • Soto D, Funes MJ, Guzmán-García A, Warbrick T, Rotshtein T, Humphreys GW. Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc Natl Acad Sci USA. 2009; 106 (14):6011–6016. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hofmann AH. Scientific Writing and Communication. Papers, Proposals, and Presentations. New York: Oxford University Press; 2010. [ Google Scholar ]
  • Zeiger M. Essentials of Writing Biomedical Research Papers. 2nd edition. San Francisco, CA: McGraw-Hill Companies, Inc.; 2000. [ Google Scholar ]
  • Martínez I. Native and non-native writers’ use of first person pronouns in the different sections of biology research articles in English. Journal of Second Language Writing. 2005; 14 (3):174–190. [ Google Scholar ]
  • Rodman L. The Active Voice In Scientific Articles: Frequency And Discourse Functions. Journal Of Technical Writing And Communication. 1994; 24 (3):309–331. [ Google Scholar ]
  • Tarone LE, Dwyer S, Gillette S, Icke V. On the use of the passive in two astrophysics journal papers with extensions to other languages and other fields. English for Specific Purposes. 1998; 17 :113–132. [ Google Scholar ]
  • Penrose AM, Katz SB. Writing in the sciences: Exploring conventions of scientific discourse. New York: St. Martin’s Press; 1998. [ Google Scholar ]
  • Swales JM, Feak CB. Academic Writing for Graduate Students. 2nd edition. Ann Arbor: University of Michigan Press; 2004. [ Google Scholar ]
  • Hess DR. How to Write an Effective Discussion. Respiratory Care. 2004; 29 (10):1238–1241. [ PubMed ] [ Google Scholar ]
  • Belcher WL. Writing Your Journal Article in 12 Weeks: a guide to academic publishing success. Thousand Oaks, CA: SAGE Publications; 2009. [ Google Scholar ]
  • Single PB. Demystifying Dissertation Writing: A Streamlined Process of Choice of Topic to Final Text. Virginia: Stylus Publishing LLC; 2010. [ Google Scholar ]
  • Faigley L, Witte SP. Analyzing revision. Composition and Communication. 1981; 32 :400–414. [ Google Scholar ]
  • Flower LS, Hayes JR, Carey L, Schriver KS, Stratman J. Detection, diagnosis, and the strategies of revision. College Composition and Communication. 1986; 37 (1):16–55. [ Google Scholar ]
  • Young BR. In: A Tutor’s Guide: Helping Writers One to One. Rafoth B, editor. Portsmouth, NH: Boynton/Cook Publishers; 2005. Can You Proofread This? pp. 140–158. [ Google Scholar ]

writing a science research paper

Writing the Scientific Paper

When you write about scientific topics to specialists in a particular scientific field, we call that scientific writing. (When you write to non-specialists about scientific topics, we call that science writing.)

The scientific paper has developed over the past three centuries into a tool to communicate the results of scientific inquiry. The main audience for scientific papers is extremely specialized. The purpose of these papers is twofold: to present information so that it is easy to retrieve, and to present enough information that the reader can duplicate the scientific study. A standard format with six main part helps readers to find expected information and analysis:

  • Title--subject and what aspect of the subject was studied.
  • Abstract--summary of paper: The main reason for the study, the primary results, the main conclusions
  • Introduction-- why the study was undertaken
  • Methods and Materials-- how the study was undertaken
  • Results-- what was found
  • Discussion-- why these results could be significant (what the reasons might be for the patterns found or not found)

There are many ways to approach the writing of a scientific paper, and no one way is right. Many people, however, find that drafting chunks in this order works best: Results, Discussion, Introduction, Materials & Methods, Abstract, and, finally, Title.

The title should be very limited and specific. Really, it should be a pithy summary of the article's main focus.

  • "Renal disease susceptibility and hypertension are under independent genetic control in the fawn hooded rat"
  • "Territory size in Lincoln's Sparrows ( Melospiza lincolnii )"
  • "Replacement of deciduous first premolars and dental eruption in archaeocete whales"
  • "The Radio-Frequency Single-Electron Transistor (RF-SET): A Fast and Ultrasensitive Electrometer"

This is a summary of your article. Generally between 50-100 words, it should state the goals, results, and the main conclusions of your study. You should list the parameters of your study (when and where was it conducted, if applicable; your sample size; the specific species, proteins, genes, etc., studied). Think of the process of writing the abstract as taking one or two sentences from each of your sections (an introductory sentence, a sentence stating the specific question addressed, a sentence listing your main techniques or procedures, two or three sentences describing your results, and one sentence describing your main conclusion).

Example One

Hypertension, diabetes and hyperlipidemia are risk factors for life-threatening complications such as end-stage renal disease, coronary artery disease and stroke. Why some patients develop complications is unclear, but only susceptibility genes may be involved. To test this notion, we studied crosses involving the fawn-hooded rat, an animal model of hypertension that develops chronic renal failure. Here, we report the localization of two genes, Rf-1 and Rf-2 , responsible for about half of the genetic variation in key indices of renal impairment. In addition, we localize a gene, Bpfh-1 , responsible for about 26% of the genetic variation in blood pressure. Rf-1 strongly affects the risk of renal impairment, but has no significant effect on blood pressure. Our results show that susceptibility to a complication of hypertension is under at least partially independent genetic control from susceptibility to hypertension itself.

Brown, Donna M, A.P. Provoost, M.J. Daly, E.S. Lander, & H.J. Jacob. 1996. "Renal disease susceptibility and hypertension are under indpendent genetic control in the faun-hooded rat." Nature Genetics , 12(1):44-51.

Example Two

We studied survival of 220 calves of radiocollared moose ( Alces alces ) from parturition to the end of July in southcentral Alaska from 1994 to 1997. Prior studies established that predation by brown bears ( Ursus arctos ) was the primary cause of mortality of moose calves in the region. Our objectives were to characterize vulnerability of moose calves to predation as influenced by age, date, snow depths, and previous reproductive success of the mother. We also tested the hypothesis that survival of twin moose calves was independent and identical to that of single calves. Survival of moose calves from parturition through July was 0.27 ± 0.03 SE, and their daily rate of mortality declined at a near constant rate with age in that period. Mean annual survival was 0.22 ± 0.03 SE. Previous winter's snow depths or survival of the mother's previous calf was not related to neonatal survival. Selection for early parturition was evidenced in the 4 years of study by a 6.3% increase in the hazard of death with each daily increase in parturition date. Although there was no significant difference in survival of twin and single moose calves, most twins that died disappeared together during the first 15 days after birth and independently thereafter, suggesting that predators usually killed both when encountered up to that age.

Key words: Alaska, Alces alces , calf survival, moose, Nelchina, parturition synchrony, predation

Testa, J.W., E.F. Becker, & G.R. Lee. 2000. "Temporal patterns in the survival of twin and single moose ( alces alces ) calves in southcentral Alaska." Journal of Mammalogy , 81(1):162-168.

Example Three

We monitored breeding phenology and population levels of Rana yavapaiensis by use of repeated egg mass censuses and visual encounter surveys at Agua Caliente Canyon near Tucson, Arizona, from 1994 to 1996. Adult counts fluctuated erratically within each year of the study but annual means remained similar. Juvenile counts peaked during the fall recruitment season and fell to near zero by early spring. Rana yavapaiensis deposited eggs in two distinct annual episodes, one in spring (March-May) and a much smaller one in fall (September-October). Larvae from the spring deposition period completed metamorphosis in earlv summer. Over the two years of study, 96.6% of egg masses successfully produced larvae. Egg masses were deposited during periods of predictable, moderate stream flow, but not during seasonal periods when flash flooding or drought were likely to affect eggs or larvae. Breeding phenology of Rana yavapaiensis is particularly well suited for life in desert streams with natural flow regimes which include frequent flash flooding and drought at predictable times. The exotic predators of R. yavapaiensis are less able to cope with fluctuating conditions. Unaltered stream flow regimes that allow natural fluctuations in stream discharge may provide refugia for this declining ranid frog from exotic predators by excluding those exotic species that are unable to cope with brief flash flooding and habitat drying.

Sartorius, Shawn S., and Philip C. Rosen. 2000. "Breeding phenology of the lowland leopard frog ( Rana yavepaiensis )." Southwestern Naturalist , 45(3): 267-273.

Introduction

The introduction is where you sketch out the background of your study, including why you have investigated the question that you have and how it relates to earlier research that has been done in the field. It may help to think of an introduction as a telescoping focus, where you begin with the broader context and gradually narrow to the specific problem addressed by the report. A typical (and very useful) construction of an introduction proceeds as follows:

"Echimyid rodents of the genus Proechimys (spiny rats) often are the most abundant and widespread lowland forest rodents throughout much of their range in the Neotropics (Eisenberg 1989). Recent studies suggested that these rodents play an important role in forest dynamics through their activities as seed predators and dispersers of seeds (Adler and Kestrell 1998; Asquith et al 1997; Forget 1991; Hoch and Adler 1997)." (Lambert and Adler, p. 70)

"Our laboratory has been involved in the analysis of the HLA class II genes and their association with autoimmune disorders such as insulin-dependent diabetes mellitus. As part of this work, the laboratory handles a large number of blood samples. In an effort to minimize the expense and urgency of transportation of frozen or liquid blood samples, we have designed a protocol that will preserve the integrity of lymphocyte DNA and enable the transport and storage of samples at ambient temperatures." (Torrance, MacLeod & Hache, p. 64)

"Despite the ubiquity and abundance of P. semispinosus , only two previous studies have assessed habitat use, with both showing a generalized habitat use. [brief summary of these studies]." (Lambert and Adler, p. 70)

"Although very good results have been obtained using polymerase chain reaction (PCR) amplification of DNA extracted from dried blood spots on filter paper (1,4,5,8,9), this preservation method yields limited amounts of DNA and is susceptible to contamination." (Torrance, MacLeod & Hache, p. 64)

"No attempt has been made to quantitatively describe microhabitat characteristics with which this species may be associated. Thus, specific structural features of secondary forests that may promote abundance of spiny rats remains unknown. Such information is essential to understand the role of spiny rats in Neotropical forests, particularly with regard to forest regeneration via interactions with seeds." (Lambert and Adler, p. 71)

"As an alternative, we have been investigating the use of lyophilization ("freeze-drying") of whole blood as a method to preserve sufficient amounts of genomic DNA to perform PCR and Southern Blot analysis." (Torrance, MacLeod & Hache, p. 64)

"We present an analysis of microhabitat use by P. semispinosus in tropical moist forests in central Panama." (Lambert and Adler, p. 71)

"In this report, we summarize our analysis of genomic DNA extracted from lyophilized whole blood." (Torrance, MacLeod & Hache, p. 64)

Methods and Materials

In this section you describe how you performed your study. You need to provide enough information here for the reader to duplicate your experiment. However, be reasonable about who the reader is. Assume that he or she is someone familiar with the basic practices of your field.

It's helpful to both writer and reader to organize this section chronologically: that is, describe each procedure in the order it was performed. For example, DNA-extraction, purification, amplification, assay, detection. Or, study area, study population, sampling technique, variables studied, analysis method.

Include in this section:

  • study design: procedures should be listed and described, or the reader should be referred to papers that have already described the used procedure
  • particular techniques used and why, if relevant
  • modifications of any techniques; be sure to describe the modification
  • specialized equipment, including brand-names
  • temporal, spatial, and historical description of study area and studied population
  • assumptions underlying the study
  • statistical methods, including software programs

Example description of activity

Chromosomal DNA was denatured for the first cycle by incubating the slides in 70% deionized formamide; 2x standard saline citrate (SSC) at 70ºC for 2 min, followed by 70% ethanol at -20ºC and then 90% and 100% ethanol at room temperature, followed by air drying. (Rouwendal et al ., p. 79)

Example description of assumptions

We considered seeds left in the petri dish to be unharvested and those scattered singly on the surface of a tile to be scattered and also unharvested. We considered seeds in cheek pouches to be harvested but not cached, those stored in the nestbox to be larderhoarded, and those buried in caching sites within the arena to be scatterhoarded. (Krupa and Geluso, p. 99)

Examples of use of specialized equipment

  • Oligonucleotide primers were prepared using the Applied Biosystems Model 318A (Foster City, CA) DNA Synthesizer according to the manufacturers' instructions. (Rouwendal et al ., p.78)
  • We first visually reviewed the complete song sample of an individual using spectrograms produced on a Princeton Applied Research Real Time Spectrum Analyzer (model 4512). (Peters et al ., p. 937)

Example of use of a certain technique

Frogs were monitored using visual encounter transects (Crump and Scott, 1994). (Sartorius and Rosen, p. 269)

Example description of statistical analysis

We used Wilcox rank-sum tests for all comparisons of pre-experimental scores and for all comparisons of hue, saturation, and brightness scores between various groups of birds ... All P -values are two-tailed unless otherwise noted. (Brawner et al ., p. 955)

This section presents the facts--what was found in the course of this investigation. Detailed data--measurements, counts, percentages, patterns--usually appear in tables, figures, and graphs, and the text of the section draws attention to the key data and relationships among data. Three rules of thumb will help you with this section:

  • present results clearly and logically
  • avoid excess verbiage
  • consider providing a one-sentence summary at the beginning of each paragraph if you think it will help your reader understand your data

Remember to use table and figures effectively. But don't expect these to stand alone.

Some examples of well-organized and easy-to-follow results:

  • Size of the aquatic habitat at Agua Caliente Canyon varied dramatically throughout the year. The site contained three rockbound tinajas (bedrock pools) that did not dry during this study. During periods of high stream discharge seven more seasonal pools and intermittent stretches of riffle became available. Perennial and seasonal pool levels remained stable from late February through early May. Between mid-May and mid-July seasonal pools dried until they disappeared. Perennial pools shrank in surface area from a range of 30-60 m² to 3-5- M². (Sartorius and Rosen, Sept. 2000: 269)

Notice how the second sample points out what is important in the accompanying figure. It makes us aware of relationships that we may not have noticed quickly otherwise and that will be important to the discussion.

A similar test result is obtained with a primer derived from the human ß-satellite... This primer (AGTGCAGAGATATGTCACAATG-CCCC: Oligo 435) labels 6 sites in the PRINS reaction: the chromosomes 1, one pair of acrocentrics and, more weakly, the chromosomes 9 (Fig. 2a). After 10 cycles of PCR-IS, the number of sites labeled has doubled (Fig. 2b); after 20 cycles, the number of sites labeled is the same but the signals are stronger (Fig. 2c) (Rouwendal et al ., July 93:80).

Related Information: Use Tables and Figures Effectively

Do not repeat all of the information in the text that appears in a table, but do summarize it. For example, if you present a table of temperature measurements taken at various times, describe the general pattern of temperature change and refer to the table.

"The temperature of the solution increased rapidly at first, going from 50º to 80º in the first three minutes (Table 1)."

You don't want to list every single measurement in the text ("After one minute, the temperature had risen to 55º. After two minutes, it had risen to 58º," etc.). There is no hard and fast rule about when to report all measurements in the text and when to put the measurements in a table and refer to them, but use your common sense. Remember that readers have all that data in the accompanying tables and figures, so your task in this section is to highlight key data, changes, or relationships.

In this section you discuss your results. What aspect you choose to focus on depends on your results and on the main questions addressed by them. For example, if you were testing a new technique, you will want to discuss how useful this technique is: how well did it work, what are the benefits and drawbacks, etc. If you are presenting data that appear to refute or support earlier research, you will want to analyze both your own data and the earlier data--what conditions are different? how much difference is due to a change in the study design, and how much to a new property in the study subject? You may discuss the implication of your research--particularly if it has a direct bearing on a practical issue, such as conservation or public health.

This section centers on speculation . However, this does not free you to present wild and haphazard guesses. Focus your discussion around a particular question or hypothesis. Use subheadings to organize your thoughts, if necessary.

This section depends on a logical organization so readers can see the connection between your study question and your results. One typical approach is to make a list of all the ideas that you will discuss and to work out the logical relationships between them--what idea is most important? or, what point is most clearly made by your data? what ideas are subordinate to the main idea? what are the connections between ideas?

Achieving the Scientific Voice

Eight tips will help you match your style for most scientific publications.

  • Develop a precise vocabulary: read the literature to become fluent, or at least familiar with, the sort of language that is standard to describe what you're trying to describe.
  • Once you've labeled an activity, a condition, or a period of time, use that label consistently throughout the paper. Consistency is more important than creativity.
  • Define your terms and your assumptions.
  • Include all the information the reader needs to interpret your data.
  • Remember, the key to all scientific discourse is that it be reproducible . Have you presented enough information clearly enough that the reader could reproduce your experiment, your research, or your investigation?
  • When describing an activity, break it down into elements that can be described and labeled, and then present them in the order they occurred.
  • When you use numbers, use them effectively. Don't present them so that they cause more work for the reader.
  • Include details before conclusions, but only include those details you have been able to observe by the methods you have described. Do not include your feelings, attitudes, impressions, or opinions.
  • Research your format and citations: do these match what have been used in current relevant journals?
  • Run a spellcheck and proofread carefully. Read your paper out loud, and/ or have a friend look over it for misspelled words, missing words, etc.

Applying the Principles, Example 1

The following example needs more precise information. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: Each male sang a definite number of songs while singing. They start with a whistle and then go from there. Each new song is always different, but made up an overall repertoire that was completed before starting over again. In 16 cases (84%), no new songs were sung after the first 20, even though we counted about 44 songs for each bird.
After: Each male used a discrete number of song types in his singing. Each song began with an introductory whistle, followed by a distinctive, complex series of fluty warbles (Fig. 1). Successive songs were always different, and five of the 19 males presented their entire song repertoire before repeating any of their song types (i.e., the first IO recorded songs revealed the entire repertoire of 10 song types). Each song type recurred in long sequences of singing, so that we could be confident that we had recorded the entire repertoire of commonly used songs by each male. For 16 of the 19 males, no new song types were encountered after the first 20 songs, even though we analyzed and average of 44 songs/male (range 30-59).

Applying the Principles, Example 2

In this set of examples, even a few changes in wording result in a more precise second version. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: The study area was on Mt. Cain and Maquilla Peak in British Columbia, Canada. The study area is about 12,000 ha of coastal montane forest. The area is both managed and unmanaged and ranges from 600-1650m. The most common trees present are mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).
After: The study took place on Mt. Cain and Maquilla Peak (50'1 3'N, 126'1 8'W), Vancouver Island, British Columbia. The study area encompassed 11,800 ha of coastal montane forest. The landscape consisted of managed and unmanaged stands of coastal montane forest, 600-1650 m in elevation. The dominant tree species included mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).

Two Tips for Sentence Clarity

Although you will want to consider more detailed stylistic revisions as you become more comfortable with scientific writing, two tips can get you started:

First, the verb should follow the subject as soon as possible.

Really Hard to Read : "The smallest of the URF's (URFA6L), a 207-nucleotide (nt) reading frame overlapping out of phase the NH2- terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit gene."

Less Hard to Read : "The smallest of the UR-F's is URFA6L, a 207-nucleotide (nt) reading frame overlapping out of phase the NH2-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene; it has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene."

Second, place familiar information first in a clause, a sentence, or a paragraph, and put the new and unfamiliar information later.

More confusing : The epidermis, the dermis, and the subcutaneous layer are the three layers of the skin. A layer of dead skin cells makes up the epidermis, which forms the body's shield against the world. Blood vessels, carrying nourishment, and nerve endings, which relay information about the outside world, are found in the dermis. Sweat glands and fat cells make up the third layer, the subcutaneous layer.

Less confusing : The skin consists of three layers: the epidermis, the dermis, and the subcutaneous layer. The epidermis is made up of dead skin cells, and forms a protective shield between the body and the world. The dermis contains the blood vessels and nerve endings that nourish the skin and make it receptive to outside stimuli. The subcutaneous layer contains the sweat glands and fat cells which perform other functions of the skin.

Bibliography

  • Scientific Writing for Graduate Students . F. P. Woodford. Bethesda, MD: Council of Biology Editors, 1968. [A manual on the teaching of writing to graduate students--very clear and direct.]
  • Scientific Style and Format . Council of Biology Editors. Cambridge: Cambridge University Press, 1994.
  • "The science of scientific writing." George Gopen and Judith Swann. The American Scientist , Vol. 78, Nov.-Dec. 1990. Pp 550-558.
  • "What's right about scientific writing." Alan Gross and Joseph Harmon. The Scientist , Dec. 6 1999. Pp. 20-21.
  • "A Quick Fix for Figure Legends and Table Headings." Donald Kroodsma. The Auk , 117 (4): 1081-1083, 2000.

Wortman-Wunder, Emily, & Kate Kiefer. (1998). Writing the Scientific Paper. Writing@CSU . Colorado State University. https://writing.colostate.edu/resources/writing/guides/.

  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Writing an Introduction for a Scientific Paper

Dr. michelle harris, dr. janet batzli, biocore.

This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question , biological rationale, hypothesis , and general approach . If the Introduction is done well, there should be no question in the reader’s mind why and on what basis you have posed a specific hypothesis.

Broad Question : based on an initial observation (e.g., “I see a lot of guppies close to the shore. Do guppies like living in shallow water?”). This observation of the natural world may inspire you to investigate background literature or your observation could be based on previous research by others or your own pilot study. Broad questions are not always included in your written text, but are essential for establishing the direction of your research.

Background Information : key issues, concepts, terminology, and definitions needed to understand the biological rationale for the experiment. It often includes a summary of findings from previous, relevant studies. Remember to cite references, be concise, and only include relevant information given your audience and your experimental design. Concisely summarized background information leads to the identification of specific scientific knowledge gaps that still exist. (e.g., “No studies to date have examined whether guppies do indeed spend more time in shallow water.”)

Testable Question : these questions are much more focused than the initial broad question, are specific to the knowledge gap identified, and can be addressed with data. (e.g., “Do guppies spend different amounts of time in water <1 meter deep as compared to their time in water that is >1 meter deep?”)

Biological Rationale : describes the purpose of your experiment distilling what is known and what is not known that defines the knowledge gap that you are addressing. The “BR” provides the logic for your hypothesis and experimental approach, describing the biological mechanism and assumptions that explain why your hypothesis should be true.

The biological rationale is based on your interpretation of the scientific literature, your personal observations, and the underlying assumptions you are making about how you think the system works. If you have written your biological rationale, your reader should see your hypothesis in your introduction section and say to themselves, “Of course, this hypothesis seems very logical based on the rationale presented.”

  • A thorough rationale defines your assumptions about the system that have not been revealed in scientific literature or from previous systematic observation. These assumptions drive the direction of your specific hypothesis or general predictions.
  • Defining the rationale is probably the most critical task for a writer, as it tells your reader why your research is biologically meaningful. It may help to think about the rationale as an answer to the questions— how is this investigation related to what we know, what assumptions am I making about what we don’t yet know, AND how will this experiment add to our knowledge? *There may or may not be broader implications for your study; be careful not to overstate these (see note on social justifications below).
  • Expect to spend time and mental effort on this. You may have to do considerable digging into the scientific literature to define how your experiment fits into what is already known and why it is relevant to pursue.
  • Be open to the possibility that as you work with and think about your data, you may develop a deeper, more accurate understanding of the experimental system. You may find the original rationale needs to be revised to reflect your new, more sophisticated understanding.
  • As you progress through Biocore and upper level biology courses, your rationale should become more focused and matched with the level of study e ., cellular, biochemical, or physiological mechanisms that underlie the rationale. Achieving this type of understanding takes effort, but it will lead to better communication of your science.

***Special note on avoiding social justifications: You should not overemphasize the relevance of your experiment and the possible connections to large-scale processes. Be realistic and logical —do not overgeneralize or state grand implications that are not sensible given the structure of your experimental system. Not all science is easily applied to improving the human condition. Performing an investigation just for the sake of adding to our scientific knowledge (“pure or basic science”) is just as important as applied science. In fact, basic science often provides the foundation for applied studies.

Hypothesis / Predictions : specific prediction(s) that you will test during your experiment. For manipulative experiments, the hypothesis should include the independent variable (what you manipulate), the dependent variable(s) (what you measure), the organism or system , the direction of your results, and comparison to be made.

If you are doing a systematic observation , your hypothesis presents a variable or set of variables that you predict are important for helping you characterize the system as a whole, or predict differences between components/areas of the system that help you explain how the system functions or changes over time.

Experimental Approach : Briefly gives the reader a general sense of the experiment, the type of data it will yield, and the kind of conclusions you expect to obtain from the data. Do not confuse the experimental approach with the experimental protocol . The experimental protocol consists of the detailed step-by-step procedures and techniques used during the experiment that are to be reported in the Methods and Materials section.

Some Final Tips on Writing an Introduction

  • As you progress through the Biocore sequence, for instance, from organismal level of Biocore 301/302 to the cellular level in Biocore 303/304, we expect the contents of your “Introduction” paragraphs to reflect the level of your coursework and previous writing experience. For example, in Biocore 304 (Cell Biology Lab) biological rationale should draw upon assumptions we are making about cellular and biochemical processes.
  • Be Concise yet Specific: Remember to be concise and only include relevant information given your audience and your experimental design. As you write, keep asking, “Is this necessary information or is this irrelevant detail?” For example, if you are writing a paper claiming that a certain compound is a competitive inhibitor to the enzyme alkaline phosphatase and acts by binding to the active site, you need to explain (briefly) Michaelis-Menton kinetics and the meaning and significance of Km and Vmax. This explanation is not necessary if you are reporting the dependence of enzyme activity on pH because you do not need to measure Km and Vmax to get an estimate of enzyme activity.
  • Another example: if you are writing a paper reporting an increase in Daphnia magna heart rate upon exposure to caffeine you need not describe the reproductive cycle of magna unless it is germane to your results and discussion. Be specific and concrete, especially when making introductory or summary statements.

Where Do You Discuss Pilot Studies? Many times it is important to do pilot studies to help you get familiar with your experimental system or to improve your experimental design. If your pilot study influences your biological rationale or hypothesis, you need to describe it in your Introduction. If your pilot study simply informs the logistics or techniques, but does not influence your rationale, then the description of your pilot study belongs in the Materials and Methods section.  

How will introductions be evaluated? The following is part of the rubric we will be using to evaluate your papers.

  • Earth Science
  • Physics & Engineering
  • Science Kits
  • Microscopes
  • Science Curriculum and Kits
  • About Home Science Tools

Teaching Resources & Guides > How to Teach Science Tips > Writing a Science Report  

Writing a Science Report

With science fair season coming up as well as many end of the year projects, students are often required to write a research paper or a report on their project. Use this guide to help you in the process from finding a topic to revising and editing your final paper.

Brainstorming Topics

Sometimes one of the largest barriers to writing a research paper is trying to figure out what to write about. Many times the topic is supplied by the teacher, or the curriculum tells what the student should research and write about. However, this is not always the case. Sometimes the student is given a very broad concept to write a research paper on, for example, water. Within the category of water, there are many topics and subtopics that would be appropriate. Topics about water can include anything from the three states of water, different water sources, minerals found in water, how water is used by living organisms, the water cycle, or how to find water in the desert. The point is that “water” is a very large topic and would be too broad to be adequately covered in a typical 3-5 page research paper.

When given a broad category to write about, it is important to narrow it down to a topic that is much more manageable. Sometimes research needs to be done in order to find the best topic to write about. (Look for searching tips in “Finding and Gathering Information.”) Listed below are some tips and guidelines for picking a suitable research topic:

  • Pick a topic within the category that you find interesting. It makes it that much easier to research and write about a topic if it interests you.
  • You may find while researching a topic that the details of the topic are very boring to you. If this is the case, and you have the option to do this, change your topic.
  • Pick a topic that you are already familiar with and research further into that area to build on your current knowledge.
  • When researching topics to do your paper on, look at how much information you are finding. If you are finding very little information on your topic or you are finding an overwhelming amount, you may need to rethink your topic.
  • If permissible, always leave yourself open to changing your topic. While researching for topics, you may come across one that you find really interesting and can use just as well as the previous topics you were searching for.
  • Most importantly, does your research topic fit the guidelines set forth by your teacher or curriculum?

Finding and Gathering Information

There are numerous resources out there to help you find information on the topic selected for your research paper. One of the first places to begin research is at your local library. Use the Dewey Decimal System or ask the librarian to help you find books related to your topic. There are also a variety of reference materials, such as encyclopedias, available at the library.

A relatively new reference resource has become available with the power of technology – the Internet. While the Internet allows the user to access a wealth of information that is often more up-to-date than printed materials such as books and encyclopedias, there are certainly drawbacks to using it. It can be hard to tell whether or not a site contains factual information or just someone’s opinion. A site can also be dangerous or inappropriate for students to use.

You may find that certain science concepts and science terminology are not easy to find in regular dictionaries and encyclopedias. A science dictionary or science encyclopedia can help you find more in-depth and relevant information for your science report. If your topic is very technical or specific, reference materials such as medical dictionaries and chemistry encyclopedias may also be good resources to use.

If you are writing a report for your science fair project, not only will you be finding information from published sources, you will also be generating your own data, results, and conclusions. Keep a journal that tracks and records your experiments and results. When writing your report, you can either write out your findings from your experiments or display them using graphs or charts .

*As you are gathering information, keep a working bibliography of where you found your sources. Look under “Citing Sources” for more information. This will save you a lot of time in the long run!

Organizing Information

Most people find it hard to just take all the information they have gathered from their research and write it out in paper form. It is hard to get a starting point and go from the beginning to the end. You probably have several ideas you know you want to put in your paper, but you may be having trouble deciding where these ideas should go. Organizing your information in a way where new thoughts can be added to a subtopic at any time is a great way to organize the information you have about your topic. Here are two of the more popular ways to organize information so it can be used in a research paper:

  • Graphic organizers such as a web or mind map . Mind maps are basically stating the main topic of your paper, then branching off into as many subtopics as possible about the main topic. Enchanted Learning has a list of several different types of mind maps as well as information on how to use them and what topics fit best for each type of mind map and graphic organizer.
  • Sub-Subtopic: Low temperatures and adequate amounts of snow are needed to form glaciers.
  • Sub-Subtopic: Glaciers move large amounts of earth and debris.
  • Sub-Subtopic: Two basic types of glaciers: valley and continental.
  • Subtopic: Icebergs – large masses of ice floating on liquid water

Different Formats For Your Paper

Depending on your topic and your writing preference, the layout of your paper can greatly enhance how well the information on your topic is displayed.

1. Process . This method is used to explain how something is done or how it works by listing the steps of the process. For most science fair projects and science experiments, this is the best format. Reports for science fairs need the entire project written out from start to finish. Your report should include a title page, statement of purpose, hypothesis, materials and procedures, results and conclusions, discussion, and credits and bibliography. If applicable, graphs, tables, or charts should be included with the results portion of your report.

2. Cause and effect . This is another common science experiment research paper format. The basic premise is that because event X happened, event Y happened.

3. Specific to general . This method works best when trying to draw conclusions about how little topics and details are connected to support one main topic or idea.

4. Climatic order . Similar to the “specific to general” category, here details are listed in order from least important to most important.

5. General to specific . Works in a similar fashion as the method for organizing your information. The main topic or subtopic is stated first, followed by supporting details that give more information about the topic.

6. Compare and contrast . This method works best when you wish to show the similarities and/or differences between two or more topics. A block pattern is used when you first write about one topic and all its details and then write about the second topic and all its details. An alternating pattern can be used to describe a detail about the first topic and then compare that to the related detail of the second topic. The block pattern and alternating pattern can also be combined to make a format that better fits your research paper.

Citing Sources

When writing a research paper, you must cite your sources! Otherwise you are plagiarizing (claiming someone else’s ideas as your own) which can cause severe penalties from failing your research paper assignment in primary and secondary grades to failing the entire course (most colleges and universities have this policy). To help you avoid plagiarism, follow these simple steps:

  • Find out what format for citing your paper your teacher or curriculum wishes you to use. One of the most widely used and widely accepted citation formats by scholars and schools is the Modern Language Association (MLA) format. We recommended that you do an Internet search for the most recent format of the citation style you will be using in your paper.
  • Keep a working bibliography when researching your topic. Have a document in your computer files or a page in your notebook where you write down every source that you found and may use in your paper. (You probably will not use every resource you find, but it is much easier to delete unused sources later rather than try to find them four weeks down the road.) To make this process even easier, write the source down in the citation format that will be used in your paper. No matter what citation format you use, you should always write down title, author, publisher, published date, page numbers used, and if applicable, the volume and issue number.
  • When collecting ideas and information from your sources, write the author’s last name at the end of the idea. When revising and formatting your paper, keep the author’s last name attached to the end of the idea, no matter where you move that idea. This way, you won’t have to go back and try to remember where the ideas in your paper came from.
  • There are two ways to use the information in your paper: paraphrasing and quotes. The majority of your paper will be paraphrasing the information you found. Paraphrasing is basically restating the idea being used in your own words.   As a general rule of thumb, no more than two of the original words should be used in sequence when paraphrasing information, and similes should be used for as many of the words as possible in the original passage without changing the meaning of the main point. Sometimes, you may find something stated so well by the original author that it would be best to use the author’s original words in your paper. When using the author’s original words, use quotation marks only around the words being directly quoted and work the quote into the body of your paper so that it makes sense grammatically. Search the Internet for more rules on paraphrasing and quoting information.

Revising and Editing Your Paper

Revising your paper basically means you are fixing grammatical errors or changing the meaning of what you wrote. After you have written the rough draft of your paper, read through it again to make sure the ideas in your paper flow and are cohesive. You may need to add in information, delete extra information, use a thesaurus to find a better word to better express a concept, reword a sentence, or just make sure your ideas are stated in a logical and progressive order.

After revising your paper, go back and edit it, correcting the capitalization, punctuation, and spelling errors – the mechanics of writing. If you are not 100% positive a word is spelled correctly, look it up in a dictionary. Ask a parent or teacher for help on the proper usage of commas, hyphens, capitalization, and numbers. You may also be able to find the answers to these questions by doing an Internet search on writing mechanics or by checking you local library for a book on writing mechanics.

It is also always a good idea to have someone else read your paper. Because this person did not write the paper and is not familiar with the topic, he or she is more likely to catch mistakes or ideas that do not quite make sense. This person can also give you insights or suggestions on how to reword or format your paper to make it flow better or convey your ideas better.

More Information:

  • Quick Science Fair Guide
  • Science Fair Project Ideas

Teaching Homeschool

Welcome! After you finish this article, we invite you to read other articles to assist you in teaching science at home on the Resource Center, which consists of hundreds of free science articles!

Shop for Science Supplies!

Home Science Tools offers a wide variety of science products and kits. Find affordable beakers, dissection supplies, chemicals, microscopes, and everything else you need to teach science for all ages!

Related Articles

29 Creative Ways to Use a Home Science Tools Beaker Mug

29 Creative Ways to Use a Home Science Tools Beaker Mug

Infuse a dash of experimentation into your daily routine with a Home Science Tools Beaker Mug! As we gear up for our 29th Anniversary, we've compiled a list of 29 exciting ways to use your beaker mug in everyday life. From brewing up creative concoctions to unleashing...

Next Generation Science Standards (NGSS)

Next Generation Science Standards (NGSS)

What are the Next Generation Science Standards (NGSS)?  These guidelines summarize what students “should” know and be able to do in different learning levels of science. The NGSS is based on research showing that students who are well-prepared for the future need...

The Beginners Guide to Choosing a Homeschool Science Curriculum

The Beginners Guide to Choosing a Homeschool Science Curriculum

Get Started: Researching Homeschool Science   Curriculums  Teaching homeschool science is a great way for families to personalize their child's education while giving you the flexibility to teach it your way. There are many wonderful science curriculums...

Synthetic Frog Dissection Guide Project

Synthetic Frog Dissection Guide Project

Frog dissections are a great way to learn about the human body, as frogs have many organs and tissues similar to those of humans. It is important to determine which type of dissection is best for your student or child. Some individuals do not enjoy performing...

Snowstorm in a Boiling Flask Density Project

Snowstorm in a Boiling Flask Density Project

You know the mesmerizing feeling of watching the snow fall during a snowstorm? With this project, you can make your own snowstorm in a flask using an adaptation from the lava lamp science experiment! It’s a perfect project for any winter day.

JOIN OUR COMMUNITY

Get project ideas and special offers delivered to your inbox.

should I learn computer coding

Essential Rules for Academic Writing: A Beginner’s Guide

Unlock the key rules for academic writing: from structure to citations. Master scholarly communication with expert insights.

' src=

Mastering the art of academic writing is a fundamental skill that empowers students and researchers to express their ideas, convey complex concepts, and contribute meaningfully to their respective fields. However, for beginners venturing into the realm of scholarly writing, navigating the intricacies of this formal discourse can be a daunting task.

“Essential Rules for Academic Writing: A Beginner’s Guide” serves as a beacon of guidance, illuminating the path for aspiring scholars as they embark on their academic journey. This comprehensive article offers invaluable insights into the fundamental principles and key rules that underpin successful academic writing, providing a strong foundation for those new to the craft.

What Is Academic Writing?

Academic writing refers to a formal style of writing that is prevalent in academic settings such as universities, research institutions, and scholarly publications. It is a mode of communication used by students, researchers, and scholars to convey their ideas, present research findings, and engage in intellectual discourse within their respective fields of study.

Related article: 11 Best Grammar Checker Tools For Academic Writing

Unlike other forms of writing, academic writing adheres to specific conventions and standards that prioritize clarity, precision, objectivity, and critical thinking. It is characterized by a rigorous approach to presenting arguments, supporting claims with evidence, and adhering to the principles of logic and reasoning.

Academic writing encompasses a wide range of genres, including essays, research papers, literature reviews, theses, dissertations, conference papers, and journal articles. Regardless of the specific genre, academic writing typically follows a structured format, includes proper citation and referencing, and adheres to established academic style guides such as APA (American Psychological Association) or MLA (Modern Language Association).

Types Of Academic Writing

Here’s a table summarizing the different types of academic writing, along with their definitions, purposes and typical structures:

Also read: Words To Use In Essays: Amplifying Your Academic Writing

General Rules For Academic Writing

Here are some general rules for academic writing: by adhering to these general guidelines, you can enhance the clarity, effectiveness, and professionalism of your academic writing, ensuring that your ideas are communicated with precision and impact.

Clarity and Precision

Academic writing demands clarity and precision in the expression of ideas. Use clear and concise language to communicate your thoughts effectively. Avoid ambiguous or vague statements, and strive for a logical flow of ideas within your writing.

Audience Awareness

Consider your intended audience when writing academically. Be aware of their background knowledge and familiarity with the topic. Adapt your writing style and level of technicality accordingly, ensuring that your content is accessible and understandable to your readers.

Use Formal Language

Academic writing requires a formal tone and language. Avoid colloquialisms, slang, and overly informal expressions. Instead, employ a vocabulary appropriate to the academic context, using specialized terms when necessary.

Structure and Organization

Structure your writing in a logical and coherent manner. Use clear headings, subheadings, and paragraphs to guide the reader through your work. Ensure that your ideas are well-organized and presented in a cohesive manner, with each paragraph or section contributing to the overall argument or discussion.

Evidence-Based Reasoning

Support your arguments and claims with credible evidence. Reference authoritative sources and cite them appropriately to establish the foundation for your ideas. Use empirical data, scholarly research, and reputable references to strengthen the validity and reliability of your work.

Critical Thinking

Academic writing encourages critical thinking and analysis. Engage with the existing literature, identify strengths and weaknesses in the arguments, and develop your own well-reasoned perspective. Challenge assumptions, evaluate alternative viewpoints, and provide well-supported arguments.

Proper Referencing and Citation

Maintain academic integrity by properly referencing and citing all sources used in your writing. Follow the specific citation style required by your academic institution or field, such as APA , MLA , or Chicago style . Accurate referencing gives credit to the original authors, allows readers to verify your sources, and demonstrates your commitment to scholarly integrity.

Revision and Proofreading

Academic writing involves a process of revision and proofreading. Review your work for clarity, coherence, grammar, and spelling errors. Ensure that your writing is free from typographical mistakes and inconsistencies. Seek feedback from peers, instructors, or writing centers to enhance the quality of your work.

Also read: What Is Proofreading And How To Harness Its Benefits?

How To Improve The Academic Writing

To enhance your academic writing skills, it is crucial to engage in regular practice and give careful consideration to various aspects. Here are some essential focal points to pay attention to in order to improve your academic writing:

Punctuation

  • Proper use of commas, periods, question marks, and exclamation marks to enhance clarity and meaning in sentences.
  • Effective use of semicolons and colons to join related independent clauses and introduce lists or explanations.
  • Understanding the role of dashes and hyphens to indicate interruptions or join words in compound adjectives.

Capitalization

  • Capitalize proper nouns, including names of people, places, institutions, and specific titles or terms.
  • Follow capitalization rules for titles, capitalizing the first and last words, as well as major words within the title.
  • Ensure consistency in capitalization within headings and subheadings.

Grammar and Sentence Structure

  • Ensure subject-verb agreement, ensuring that the subject and verb agree in number and person.
  • Use proper tenses and maintain consistency in verb tense usage within a paragraph or section.
  • Write clear and unambiguous sentences, avoiding run-on sentences, fragments, or unclear pronoun references.

Academic Conventions

  • Apply appropriate formatting and font style as per the guidelines of the specific academic institution or style guide.
  • Use headings and subheadings correctly, following a consistent hierarchy and formatting style.
  • Use abbreviations appropriately and consistently, following the accepted conventions in the field.
  • Adhere to specific guidelines for tables, figures, and graphs, including proper numbering, labeling, and citation.

Infographic Templates Made By Scientists

Mind the Graph revolutionizes scientific communication by offering scientists a user-friendly platform with scientifically-themed infographic templates. Publication-ready exporting ensures seamless integration into scientific papers and presentations. Mind the Graph empowers scientists to make their research more accessible and engaging through visually appealing infographics. Start your free trial now!

illustrations-banner

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Unlock Your Creativity

Create infographics, presentations and other scientifically-accurate designs without hassle — absolutely free for 7 days!

About Jessica Abbadia

Jessica Abbadia is a lawyer that has been working in Digital Marketing since 2020, improving organic performance for apps and websites in various regions through ASO and SEO. Currently developing scientific and intellectual knowledge for the community's benefit. Jessica is an animal rights activist who enjoys reading and drinking strong coffee.

Content tags

en_US

How to Write a Research Paper 

How to Write a Research Paper 

  • Smodin Editorial Team
  • Updated: May 17, 2024

Most students hate writing research papers. The process can often feel long, tedious, and sometimes outright boring. Nevertheless, these assignments are vital to a student’s academic journey. Want to learn how to write a research paper that captures the depth of the subject and maintains the reader’s interest? If so, this guide is for you.

Today, we’ll show you how to assemble a well-organized research paper to help you make the grade. You can transform any topic into a compelling research paper with a thoughtful approach to your research and a persuasive argument.

In this guide, we’ll provide seven simple but practical tips to help demystify the process and guide you on your way. We’ll also explain how AI tools can expedite the research and writing process so you can focus on critical thinking.

By the end of this article, you’ll have a clear roadmap for tackling these essays. You will also learn how to tackle them quickly and efficiently. With time and dedication, you’ll soon master the art of research paper writing.

Ready to get started?

What Is a Research Paper?

A research paper is a comprehensive essay that gives a detailed analysis, interpretation, or argument based on your own independent research. In higher-level academic settings, it goes beyond a simple summarization and includes a deep inquiry into the topic or topics.

The term “research paper” is a broad term that can be applied to many different forms of academic writing. The goal is to combine your thoughts with the findings from peer-reviewed scholarly literature.

By the time your essay is done, you should have provided your reader with a new perspective or challenged existing findings. This demonstrates your mastery of the subject and contributes to ongoing scholarly debates.

7 Tips for Writing a Research Paper

Often, getting started is the most challenging part of a research paper. While the process can seem daunting, breaking it down into manageable steps can make it easier to manage. The following are seven tips for getting your ideas out of your head and onto the page.

1. Understand Your Assignment

It may sound simple, but the first step in writing a successful research paper is to read the assignment. Sit down, take a few moments of your time, and go through the instructions so you fully understand your assignment.

Misinterpreting the assignment can not only lead to a significant waste of time but also affect your grade. No matter how patient your teacher or professor may be, ignoring basic instructions is often inexcusable.

If you read the instructions and are still confused, ask for clarification before you start writing. If that’s impossible, you can use tools like Smodin’s AI chat to help. Smodin can help highlight critical requirements that you may overlook.

This initial investment ensures that all your future efforts will be focused and efficient. Remember, thinking is just as important as actually writing the essay, and it can also pave the wave for a smoother writing process.

2. Gather Research Materials

Now comes the fun part: doing the research. As you gather research materials, always use credible sources, such as academic journals or peer-reviewed papers. Only use search engines that filter for accredited sources and academic databases so you can ensure your information is reliable.

To optimize your time, you must learn to master the art of skimming. If a source seems relevant and valuable, save it and review it later. The last thing you want to do is waste time on material that won’t make it into the final paper.

To speed up the process even more, consider using Smodin’s AI summarizer . This tool can help summarize large texts, highlighting key information relevant to your topic. By systematically gathering and filing research materials early in the writing process, you build a strong foundation for your thesis.

3. Write Your Thesis

Creating a solid thesis statement is the most important thing you can do to bring structure and focus to your research paper. Your thesis should express the main point of your argument in one or two simple sentences. Remember, when you create your thesis, you’re setting the tone and direction for the entire paper.

Of course, you can’t just pull a winning thesis out of thin air. Start by brainstorming potential thesis ideas based on your preliminary research. And don’t overthink things; sometimes, the most straightforward ideas are often the best.

You want a thesis that is specific enough to be manageable within the scope of your paper but broad enough to allow for a unique discussion. Your thesis should challenge existing expectations and provide the reader with fresh insight into the topic. Use your thesis to hook the reader in the opening paragraph and keep them engaged until the very last word.

4. Write Your Outline

An outline is an often overlooked but essential tool for organizing your thoughts and structuring your paper. Many students skip the outline because it feels like doing double work, but a strong outline will save you work in the long run.

Here’s how to effectively structure your outline.

  • Introduction: List your thesis statement and outline the main questions your essay will answer.
  • Literature Review: Outline the key literature you plan to discuss and explain how it will relate to your thesis.
  • Methodology: Explain the research methods you will use to gather and analyze the information.
  • Discussion: Plan how you will interpret the results and their implications for your thesis.
  • Conclusion: Summarize the content above to elucidate your thesis fully.

To further streamline this process, consider using Smodin’s Research Writer. This tool offers a feature that allows you to generate and tweak an outline to your liking based on the initial input you provide. You can adjust this outline to fit your research findings better and ensure that your paper remains well-organized and focused.

5. Write a Rough Draft

Once your outline is in place, you can begin the writing process. Remember, when you write a rough draft, it isn’t meant to be perfect. Instead, use it as a working document where you can experiment with and rearrange your arguments and evidence.

Don’t worry too much about grammar, style, or syntax as you write your rough draft. Focus on getting your ideas down on paper and flush out your thesis arguments. You can always refine and rearrange the content the next time around.

Follow the basic structure of your outline but with the freedom to explore different ways of expressing your thoughts. Smodin’s Essay Writer offers a powerful solution for those struggling with starting or structuring their drafts.

After you approve the outline, Smodin can generate an essay based on your initial inputs. This feature can help you quickly create a comprehensive draft, which you can then review and refine. You can even use the power of AI to create multiple rough drafts from which to choose.

6. Add or Subtract Supporting Evidence

Once you have a rough draft, but before you start the final revision, it’s time to do a little cleanup. In this phase, you need to review all your supporting evidence. You want to ensure that there is nothing redundant and that you haven’t overlooked any crucial details.

Many students struggle to make the required word count for an essay and resort to padding their writing with redundant statements. Instead of adding unnecessary content, focus on expanding your analysis to provide deeper insights.

A good essay, regardless of the topic or format, needs to be streamlined. It should convey clear, convincing, relevant information supporting your thesis. If you find some information doesn’t do that, consider tweaking your sources.

Include a variety of sources, including studies, data, and quotes from scholars or other experts. Remember, you’re not just strengthening your argument but demonstrating the depth of your research.

If you want comprehensive feedback on your essay without going to a writing center or pestering your professor, use Smodin. The AI Chat can look at your draft and offer suggestions for improvement.

7. Revise, Cite, and Submit

The final stages of crafting a research paper involve revision, citation, and final review. You must ensure your paper is polished, professionally presented, and plagiarism-free. Of course, integrating Smodin’s AI tools can significantly streamline this process and enhance the quality of your final submission.

Start by using Smodin’s Rewriter tool. This AI-powered feature can help rephrase and refine your draft to improve overall readability. If a specific section of your essay just “doesn’t sound right,” the AI can suggest alternative sentence structures and word choices.

Proper citation is a must for all academic papers. Thankfully, thanks to Smodin’s Research Paper app, this once tedious process is easier than ever. The AI ensures all sources are accurately cited according to the required style guide (APA, MLA, Chicago, etc.).

Plagiarism Checker:

All students need to realize that accidental plagiarism can happen. That’s why using a Plagiarism Checker to scan your essay before you submit it is always useful. Smodin’s Plagiarism Checker can highlight areas of concern so you can adjust accordingly.

Final Submission

After revising, rephrasing, and ensuring all citations are in order, use Smodin’s AI Content Detector to give your paper one last review. This tool can help you analyze your paper’s overall quality and readability so you can make any final tweaks or improvements.

Mastering Research Papers

Mastering the art of the research paper cannot be overstated, whether you’re in high school, college, or postgraduate studies. You can confidently prepare your research paper for submission by leveraging the AI tools listed above.

Research papers help refine your abilities to think critically and write persuasively. The skills you develop here will serve you well beyond the walls of the classroom. Communicating complex ideas clearly and effectively is one of the most powerful tools you can possess.

With the advancements of AI tools like Smodin , writing a research paper has become more accessible than ever before. These technologies streamline the process of organizing, writing, and revising your work. Write with confidence, knowing your best work is yet to come!

How Does Writing Fit Into the ‘Science of Reading’?

writing a science research paper

  • Share article

In one sense, the national conversation about what it will take to make sure all children become strong readers has been wildly successful: States are passing legislation supporting evidence-based teaching approaches , and school districts are rushing to supply training. Publishers are under pressure to drop older materials . And for the first time in years, an instructional issue—reading—is headlining education media coverage.

In the middle of all that, though, the focus on the “science of reading” has elided its twin component in literacy instruction: writing.

Writing is intrinsically important for all students to learn—after all, it is the primary way beyond speech that humans communicate. But more than that, research suggests that teaching students to write in an integrated fashion with reading is not only efficient, it’s effective.

Yet writing is often underplayed in the elementary grades. Too often, it is separated from schools’ reading block. Writing is not assessed as frequently as reading, and principals, worried about reading-exam scores, direct teachers to focus on one often at the expense of the other. Finally, beyond the English/language arts block, kids often aren’t asked to do much writing in early grades.

“Sometimes, in an early-literacy classroom, you’ll hear a teacher say, ‘It’s time to pick up your pencils,’” said Wiley Blevins, an author and literacy consultant who provides training in schools. “But your pencils should be in your hand almost the entire morning.”

Strikingly, many of the critiques that reading researchers have made against the “balanced literacy” approach that has held sway in schools for decades could equally apply to writing instruction: Foundational writing skills—like phonics and language structure—have not generally been taught systematically or explicitly.

And like the “find the main idea” strategies commonly taught in reading comprehension, writing instruction has tended to focus on content-neutral tasks, rather than deepening students’ connections to the content they learn.

Education Week wants to bring more attention to these connections in the stories that make up this special collection . But first, we want to delve deeper into the case for including writing in every step of the elementary curriculum.

Why has writing been missing from the reading conversation?

Much like the body of knowledge on how children learn to read words, it is also settled science that reading and writing draw on shared knowledge, even though they have traditionally been segmented in instruction.

“The body of research is substantial in both number of studies and quality of studies. There’s no question that reading and writing share a lot of real estate, they depend on a lot of the same knowledge and skills,” said Timothy Shanahan, an emeritus professor of education at the University of Illinois Chicago. “Pick your spot: text structure, vocabulary, sound-symbol relationships, ‘world knowledge.’”

The reasons for the bifurcation in reading and writing are legion. One is that the two fields have typically been studied separately. (Researchers studying writing usually didn’t examine whether a writing intervention, for instance, also aided students’ reading abilities—and vice versa.)

Some scholars also finger the dominance of the federally commissioned National Reading Panel report, which in 2000 outlined key instructional components of learning to read. The review didn’t examine the connection of writing to reading.

Looking even further back yields insights, too. Penmanship and spelling were historically the only parts of writing that were taught, and when writing reappeared in the latter half of the 20th century, it tended to focus on “process writing,” emphasizing personal experience and story generation over other genres. Only when the Common Core State Standards appeared in 2010 did the emphasis shift to writing about nonfiction texts and across subjects—the idea that students should be writing about what they’ve learned.

And finally, teaching writing is hard. Few studies document what preparation teachers receive to teach writing, but in surveys, many teachers say they received little training in their college education courses. That’s probably why only a little over half of teachers, in one 2016 survey, said that they enjoyed teaching writing.

Writing should begin in the early grades

These factors all work against what is probably the most important conclusion from the research over the last few decades: Students in the early-elementary grades need lots of varied opportunities to write.

“Students need support in their writing,” said Dana Robertson, an associate professor of reading and literacy education at the school of education at Virginia Tech who also studies how instructional change takes root in schools. “They need to be taught explicitly the skills and strategies of writing and they need to see the connections of reading, writing, and knowledge development.”

While research supports some fundamental tenets of writing instruction—that it should be structured, for instance, and involve drafting and revising—it hasn’t yet pointed to a specific teaching recipe that works best.

One of the challenges, the researchers note, is that while reading curricula have improved over the years, they still don’t typically provide many supports for students—or teachers, for that matter—for writing. Teachers often have to supplement with additions that don’t always mesh well with their core, grade-level content instruction.

“We have a lot of activities in writing we know are good,” Shanahan said. “We don’t really have a yearlong elementary-school-level curriculum in writing. That just doesn’t exist the way it does in reading.”

Nevertheless, practitioners like Blevins work writing into every reading lesson, even in the earliest grades. And all the components that make up a solid reading program can be enhanced through writing activities.

4 Key Things to Know About How Reading and Writing Interlock

Want a quick summary of what research tells us about the instructional connections between reading and writing?

1. Reading and writing are intimately connected.

Research on the connections began in the early 1980s and has grown more robust with time.

Among the newest and most important additions are three research syntheses conducted by Steve Graham, a professor at the University of Arizona, and his research partners. One of them examined whether writing instruction also led to improvements in students’ reading ability; a second examined the inverse question. Both found significant positive effects for reading and writing.

A third meta-analysis gets one step closer to classroom instruction. Graham and partners examined 47 studies of instructional programs that balanced both reading and writing—no program could feature more than 60 percent of one or the other. The results showed generally positive effects on both reading and writing measures.

2. Writing matters even at the earliest grades, when students are learning to read.

Studies show that the prewriting students do in early education carries meaningful signals about their decoding, spelling, and reading comprehension later on. Reading experts say that students should be supported in writing almost as soon as they begin reading, and evidence suggests that both spelling and handwriting are connected to the ability to connect speech to print and to oral language development.

3. Like reading, writing must be taught explicitly.

Writing is a complex task that demands much of students’ cognitive resources. Researchers generally agree that writing must be explicitly taught—rather than left up to students to “figure out” the rules on their own.

There isn’t as much research about how precisely to do this. One 2019 review, in fact, found significant overlap among the dozen writing programs studied, and concluded that all showed signs of boosting learning. Debates abound about the amount of structure students need and in what sequence, such as whether they need to master sentence construction before moving onto paragraphs and lengthier texts.

But in general, students should be guided on how to construct sentences and paragraphs, and they should have access to models and exemplars, the research suggests. They also need to understand the iterative nature of writing, including how to draft and revise.

A number of different writing frameworks incorporating various degrees of structure and modeling are available, though most of them have not been studied empirically.

4. Writing can help students learn content—and make sense of it.

Much of reading comprehension depends on helping students absorb “world knowledge”—think arts, ancient cultures, literature, and science—so that they can make sense of increasingly sophisticated texts and ideas as their reading improves. Writing can enhance students’ content learning, too, and should be emphasized rather than taking a back seat to the more commonly taught stories and personal reflections.

Graham and colleagues conducted another meta-analysis of nearly 60 studies looking at this idea of “writing to learn” in mathematics, science, and social studies. The studies included a mix of higher-order assignments, like analyses and argumentative writing, and lower-level ones, like summarizing and explaining. The study found that across all three disciplines, writing about the content improved student learning.

If students are doing work on phonemic awareness—the ability to recognize sounds—they shouldn’t merely manipulate sounds orally; they can put them on the page using letters. If students are learning how to decode, they can also encode—record written letters and words while they say the sounds out loud.

And students can write as they begin learning about language structure. When Blevins’ students are mainly working with decodable texts with controlled vocabularies, writing can support their knowledge about how texts and narratives work: how sentences are put together and how they can be pulled apart and reconstructed. Teachers can prompt them in these tasks, asking them to rephrase a sentence as a question, split up two sentences, or combine them.

“Young kids are writing these mile-long sentences that become second nature. We set a higher bar, and they are fully capable of doing it. We can demystify a bit some of that complex text if we develop early on how to talk about sentences—how they’re created, how they’re joined,” Blevins said. “There are all these things you can do that are helpful to develop an understanding of how sentences work and to get lots of practice.”

As students progress through the elementary grades, this structured work grows more sophisticated. They need to be taught both sentence and paragraph structure , and they need to learn how different writing purposes and genres—narrative, persuasive, analytical—demand different approaches. Most of all, the research indicates, students need opportunities to write at length often.

Using writing to support students’ exploration of content

Reading is far more than foundational skills, of course. It means introducing students to rich content and the specialized vocabulary in each discipline and then ensuring that they read, discuss, analyze, and write about those ideas. The work to systematically build students’ knowledge begins in the early grades and progresses throughout their K-12 experience.

Here again, available evidence suggests that writing can be a useful tool to help students explore, deepen, and draw connections in this content. With the proper supports, writing can be a method for students to retell and analyze what they’ve learned in discussions of content and literature throughout the school day —in addition to their creative writing.

This “writing to learn” approach need not wait for students to master foundational skills. In the K-2 grades especially, much content is learned through teacher read-alouds and conversation that include more complex vocabulary and ideas than the texts students are capable of reading. But that should not preclude students from writing about this content, experts say.

“We do a read-aloud or a media piece and we write about what we learned. It’s just a part of how you’re responding, or sharing, what you’ve learned across texts; it’s not a separate thing from reading,” Blevins said. “If I am doing read-alouds on a concept—on animal habitats, for example—my decodable texts will be on animals. And students are able to include some of these more sophisticated ideas and language in their writing, because we’ve elevated the conversations around these texts.”

In this set of stories , Education Week examines the connections between elementary-level reading and writing in three areas— encoding , language and text structure , and content-area learning . But there are so many more examples.

Please write us to share yours when you’ve finished.

Want to read more about the research that informed this story? Here’s a bibliography to start you off.

Berninger V. W., Abbott, R. D., Abbott, S. P., Graham S., & Richards T. (2002). Writing and reading: Connections between language by hand and language by eye. J ournal of Learning Disabilities. Special Issue: The Language of Written Language, 35(1), 39–56 Berninger, Virginia, Robert D. Abbott, Janine Jones, Beverly J. Wolf, Laura Gould, Marci Anderson-Younstrom, Shirley Shimada, Kenn Apel. (2006) “Early development of language by hand: composing, reading, listening, and speaking connections; three letter-writing modes; and fast mapping in spelling.” Developmental Neuropsychology, 29(1), pp. 61-92 Cabell, Sonia Q, Laura S. Tortorelli, and Hope K. Gerde (2013). “How Do I Write…? Scaffolding Preschoolers’ Early Writing Skills.” The Reading Teacher, 66(8), pp. 650-659. Gerde, H.K., Bingham, G.E. & Wasik, B.A. (2012). “Writing in Early Childhood Classrooms: Guidance for Best Practices.” Early Childhood Education Journal 40, 351–359 (2012) Gilbert, Jennifer, and Steve Graham. (2010). “Teaching Writing to Elementary Students in Grades 4–6: A National Survey.” The Elementary School Journal 110(44) Graham, Steve, et al. (2017). “Effectiveness of Literacy Programs Balancing Reading and Writing Instruction: A Meta-Analysis.” Reading Research Quarterly, 53(3) pp. 279–304 Graham, Steve, and Michael Hebert. (2011). “Writing to Read: A Meta-Analysis of the Impact of Writing and Writing Instruction on Reading.” Harvard Educational Review (2011) 81(4): 710–744. Graham, Steve. (2020). “The Sciences of Reading and Writing Must Become More Fully Integrated.” Reading Research Quarterly, 55(S1) pp. S35–S44 Graham, Steve, Sharlene A. Kiuhara, and Meade MacKay. (2020).”The Effects of Writing on Learning in Science, Social Studies, and Mathematics: A Meta-Analysis.” Review of Educational Research April 2020, Vol 90, No. 2, pp. 179–226 Shanahan, Timothy. “History of Writing and Reading Connections.” in Shanahan, Timothy. (2016). “Relationships between reading and writing development.” In C. MacArthur, S. Graham, & J. Fitzgerald (Eds.), Handbook of writing research (2nd ed., pp. 194–207). New York, NY: Guilford. Slavin, Robert, Lake, C., Inns, A., Baye, A., Dachet, D., & Haslam, J. (2019). “A quantitative synthesis of research on writing approaches in grades 2 to 12.” London: Education Endowment Foundation. Troia, Gary. (2014). Evidence-based practices for writing instruction (Document No. IC-5). Retrieved from University of Florida, Collaboration for Effective Educator, Development, Accountability, and Reform Center website: http://ceedar.education.ufl.edu/tools/innovation-configuration/ Troia, Gary, and Steve Graham. (2016).“Common Core Writing and Language Standards and Aligned State Assessments: A National Survey of Teacher Beliefs and Attitudes.” Reading and Writing 29(9).

A version of this article appeared in the January 25, 2023 edition of Education Week as How Does Writing Fit Into the ‘Science of Reading’?

Young writer looking at a flash card showing a picture of a dog and writing various words that begin with a "D" like dog, donut, duck and door.

Sign Up for EdWeek Update

Edweek top school jobs.

Dr. Carey Wright, the interim state superintendent for Maryland, discusses improving literacy instruction and achievement with Stephen Sawchuk, an assistant managing editor for Education Week, during the 2024 Leadership Symposium in Arlington, Va. on Friday, May 3, 2024.

Sign Up & Sign In

module image 9

  • MyU : For Students, Faculty, and Staff

CS&E Announces 2024-25 Doctoral Dissertation Fellowship (DDF) Award Winners

Collage of headshots of scholarship recipients

Seven Ph.D. students working with CS&E professors have been named Doctoral Dissertation Fellows for the 2024-25 school year. The Doctoral Dissertation Fellowship is a highly competitive fellowship that gives the University’s most accomplished Ph.D. candidates an opportunity to devote full-time effort to an outstanding research project by providing time to finalize and write a dissertation during the fellowship year. The award includes a stipend of $25,000, tuition for up to 14 thesis credits each semester, and subsidized health insurance through the Graduate Assistant Health Plan.

CS&E congratulates the following students on this outstanding accomplishment:

  • Athanasios Bacharis (Advisor: Nikolaos Papanikolopoulos )
  • Karin de Langis (Advisor:  Dongyeop Kang )
  • Arshia Zernab Hassan (Advisors: Chad Myers )
  • Xinyue Hu (Advisors: Zhi-Li Zhang )
  • Lucas Kramer (Advisors: Eric Van Wyk )
  • Yijun Lin (Advisors: Yao-Yi Chiang )
  • Mingzhou Yang (Advisors: Shashi Shekhar )

Athanasios Bacharis

Athanasios Bacharis headshot

Bacharis’ work centers around the robot-vision area, focusing on making autonomous robots act on visual information. His research includes active vision approaches, namely, view planning and next-best-view, to tackle the problem of 3D reconstruction via different optimization frameworks. The acquisition of 3D information is crucial for automating tasks, and active vision methods obtain it via optimal inference. Areas of impact include agriculture and healthcare, where 3D models can lead to reduced use of fertilizers via phenotype analysis of crops and effective management of cancer treatments. Bacharis has a strong publication record, with two peer-reviewed conference papers and one journal paper already published. He also has one conference paper under review and two journal papers in the submission process. His publications are featured in prestigious robotic and automation venues, further demonstrating his expertise and the relevance of his research in the field.

Karin de Langis

Karin de Langis headshot

Karin's thesis works at the intersection of Natural Language Processing (NLP) and cognitive science. Her work uses eye-tracking and other cognitive signals to improve NLP systems in their performance and cognitive interpretability, and to create NLP systems that process language more similarly to humans. Her human-centric approach to NLP is motivated by the possibility of addressing the shortcomings of current statistics-based NLP systems, which often become stuck on explainability and interpretability, resulting in potential biases. This work has most recently been accepted and presented at SIGNLL Conference on Computational Natural Language Learning (CoNLL) conference which has a special focus on theoretically, cognitively and scientifically motivated approaches to computational linguistics.

Arshia Zernab Hassan

Arshia Zernab Hassan headshot

Hassan's thesis work delves into developing computational methods for interpreting data from genome wide CRISPR/Cas9 screens. CRISPR/Cas9 is a new approach for genome editing that enables precise, large-scale editing of genomes and construction of mutants in human cells. These are powerful data for inferring functional relationships among genes essential for cancer growth. Moreover, chemical-genetic CRISPR screens, where population of mutant cells are grown in the presence of chemical compounds, help us understand the effect the chemicals have on cancer cells and formulate precise drug solutions. Given the novelty of these experimental technologies, computational methods to process and interpret the resulting data and accurately quantify the various genetic interactions are still quite limited, and this is where Hassan’s dissertation is focused on. Her research extends to developing deep-learning based methods that leverage CRISPR chemical-genetic and other genomic datasets to predict cancer sensitivity to candidate drugs. Her methods on improving information content in CRISPR screens was published in the Molecular Systems Biology journal, a highly visible journal in the computational biology field. 

Xinyue Hu headshot

Hu's Ph.D. dissertation is concentrated on how to effectively leverage the power of artificial intelligence and machine learning (AI/ML) – especially deep learning – to tackle challenging and important problems in the design and development of reliable, effective and secure (independent) physical infrastructure networks. More specifically, her research focuses on two critical infrastructures: power grids and communication networks, in particular, emerging 5G networks, both of which not only play a critical role in our daily life but are also vital to the nation’s economic well-being and security. Due to the enormous complexity, diversity, and scale of these two infrastructures, traditional approaches based on (simplified) theoretical models and heuristics-based optimization are no longer sufficient in overcoming many technical challenges in the design and operations of these infrastructures: data-driven machine learning approaches have become increasingly essential. The key question now is: how does one leverage the power of AI/ML without abandoning the rich theory and practical expertise that have accumulated over the years? Hu’s research has pioneered a new paradigm – (domain) knowledge-guided machine learning (KGML) – in tackling challenging and important problems in power grid and communications (e.g., 5G) network infrastructures.

Lucas Kramer

Lucas Kramer headshot

Kramer is now the driving force in designing tools and techniques for building extensible programming languages, with the Minnesota Extensible Language Tools (MELT) group. These are languages that start with a host language such as C or Java, but can then be extended with new syntax (notations) and new semantics (e.g. error-checking analyses or optimizations) over that new syntax and the original host language syntax. One extension that Kramer created was to embed the domain-specific language Halide in MELT's extensible specification of C, called ableC. This extension allows programmers to specify how code working on multi-dimensional matrices is transformed and optimized to make efficient use of hardware. Another embeds the logic-programming language Prolog into ableC; yet another provides a form of nondeterministic parallelism useful in some algorithms that search for a solution in a structured, but very large, search space. The goal of his research is to make building language extensions such as these more practical for non-expert developers.  To this end he has made many significant contributions to the MELT group's Silver meta-language, making it easier for extension developers to correctly specify complex language features with minimal boilerplate. Kramer is the lead author of one journal and four conference papers on his work at the University of Minnesota, winning the distinguished paper award for his 2020 paper at the Software Language Engineering conference, "Strategic Tree Rewriting in Attribute Grammars".

Yijun Lin headshot

Lin’s doctoral dissertation focuses on a timely, important topic of spatiotemporal prediction and forecasting using multimodal and multiscale data. Spatiotemporal prediction and forecasting are important scientific problems applicable to diverse phenomena, such as air quality, ambient noise, traffic conditions, and meteorology. Her work also couples the resulting prediction and forecasting with multimodal (e.g., satellite imagery, street-view photos, census records, and human mobility data) and multiscale geographic information (e.g., census records focusing on small tracts vs. neighborhood surveys) to characterize the natural and built environment, facilitating our understanding of the interactions between and within human social systems and the ecosystem. Her work has a wide-reaching impact across multiple domains such as smart cities, urban planning, policymaking, and public health.

Mingzhou Yang

Mingzhou Yang headshot

Yang is developing a thesis in the broad area of spatial data mining for problems in transportation. His thesis has both societal and theoretical significance. Societally, climate change is a grand challenge due to the increasing severity and frequency of climate-related disasters such as wildfires, floods, droughts, etc. Thus, many nations are aiming at carbon neutrality (also called net zero) by mid-century to avert the worst impacts of global warming. Improving energy efficiency and reducing toxic emissions in transportation is important because transportation accounts for the vast majority of U.S. petroleum consumption as well as over a third of GHG emissions and over a hundred thousand U.S. deaths annually via air pollution. To accurately quantify the expected environmental cost of vehicles during real-world driving, Yang's thesis explores ways to incorporate physics in the neural network architecture complementing other methods of integration: feature incorporation, and regularization. This approach imposes stringent physical constraints on the neural network model, guaranteeing that its outputs are consistently in accordance with established physical laws for vehicles. Extensive experiments including ablation studies demonstrated the efficacy of incorporating physics into the model. 

Related news releases

  • Brock Shamblin Wins 2024 Riedl TA Award
  • Ph.D. Student Angel Sylvester Mentor’s High School Student
  • 2024 John T. Riedl Memorial Graduate Teaching Assistant Award
  • CS&E Earns Five Awards at 2023 SIAM SDM
  • CS&E Announces 2023-24 Doctoral Dissertation Fellowship (DDF) Award Winners
  • Future undergraduate students
  • Future transfer students
  • Future graduate students
  • Future international students
  • Diversity and Inclusion Opportunities
  • Learn abroad
  • Living Learning Communities
  • Mentor programs
  • Programs for women
  • Student groups
  • Visit, Apply & Next Steps
  • Information for current students
  • Departments and majors overview
  • Departments
  • Undergraduate majors
  • Graduate programs
  • Integrated Degree Programs
  • Additional degree-granting programs
  • Online learning
  • Academic Advising overview
  • Academic Advising FAQ
  • Academic Advising Blog
  • Appointments and drop-ins
  • Academic support
  • Commencement
  • Four-year plans
  • Honors advising
  • Policies, procedures, and forms
  • Career Services overview
  • Resumes and cover letters
  • Jobs and internships
  • Interviews and job offers
  • CSE Career Fair
  • Major and career exploration
  • Graduate school
  • Collegiate Life overview
  • Scholarships
  • Diversity & Inclusivity Alliance
  • Anderson Student Innovation Labs
  • Information for alumni
  • Get engaged with CSE
  • Upcoming events
  • CSE Alumni Society Board
  • Alumni volunteer interest form
  • Golden Medallion Society Reunion
  • 50-Year Reunion
  • Alumni honors and awards
  • Outstanding Achievement
  • Alumni Service
  • Distinguished Leadership
  • Honorary Doctorate Degrees
  • Nobel Laureates
  • Alumni resources
  • Alumni career resources
  • Alumni news outlets
  • CSE branded clothing
  • International alumni resources
  • Inventing Tomorrow magazine
  • Update your info
  • CSE giving overview
  • Why give to CSE?
  • College priorities
  • Give online now
  • External relations
  • Giving priorities
  • CSE Dean's Club
  • Donor stories
  • Impact of giving
  • Ways to give to CSE
  • Matching gifts
  • CSE directories
  • Invest in your company and the future
  • Recruit our students
  • Connect with researchers
  • K-12 initiatives
  • Diversity initiatives
  • Research news
  • Give to CSE
  • CSE priorities
  • Corporate relations
  • Information for faculty and staff
  • Administrative offices overview
  • Office of the Dean
  • Academic affairs
  • Finance and Operations
  • Communications
  • Human resources
  • Undergraduate programs and student services
  • CSE Committees
  • CSE policies overview
  • Academic policies
  • Faculty hiring and tenure policies
  • Finance policies and information
  • Graduate education policies
  • Human resources policies
  • Research policies
  • Research overview
  • Research centers and facilities
  • Research proposal submission process
  • Research safety
  • Award-winning CSE faculty
  • National academies
  • University awards
  • Honorary professorships
  • Collegiate awards
  • Other CSE honors and awards
  • Staff awards
  • Performance Management Process
  • Work. With Flexibility in CSE
  • K-12 outreach overview
  • Summer camps
  • Outreach events
  • Enrichment programs
  • Field trips and tours
  • CSE K-12 Virtual Classroom Resources
  • Educator development
  • Sponsor an event

COMMENTS

  1. How To Write A Research Paper (FREE Template

    Learn how to write a research paper in three easy steps: finding a topic and reviewing the literature, developing a structure and outline, and writing up your draft and refining it. Get tips, examples, and a free template from Grad Coach.

  2. Scientific Writing Made Easy: A Step‐by‐Step Guide to Undergraduate

    Cooperative Institute for Research in Environmental Sciences, University of Colorado, UCB 334, Boulder, Colorado, 80309 USA ... This guide was inspired by Joshua Schimel's Writing Science: How to Write Papers that Get Cited and Proposals that Get Funded—an excellent book about scientific writing for graduate students and professional ...

  3. Toolkit: How to write a great paper

    Learn how to structure, write and title your research paper with this guide from Nature Careers. Find tips on accuracy, brevity, clarity and engagement for your scientific communication.

  4. How to Write a Research Paper

    Learn the steps to write a research paper, from choosing a topic to proofreading your draft. Scribbr offers tips, examples, and a citation checker to help you with your academic writing.

  5. A Guide to Writing a Scientific Paper: A Focus on High School Through

    For student researchers, writing a well-organized research paper is a key step in learning how to express understanding, make critical connections, summarize data, and effectively communicate results, which are important goals for improving science literacy of the National Research Council's National Science Education Standards, 4 and A ...

  6. How to write a research paper

    Then, writing the paper and getting it ready for submission may take me 3 to 6 months. I like separating the writing into three phases. The results and the methods go first, as this is where I write what was done and how, and what the outcomes were. In a second phase, I tackle the introduction and refine the results section with input from my ...

  7. Writing in the Sciences Course by Stanford University

    There are 8 modules in this course. This course teaches scientists to become more effective writers, using practical examples and exercises. Topics include: principles of good writing, tricks for writing faster and with less anxiety, the format of a scientific manuscript, peer review, grant writing, ethical issues in scientific publication, and ...

  8. Writing a Research Paper Introduction

    Learn how to introduce your topic, provide background, establish your research problem, and specify your objective in a research paper introduction. Follow the step-by-step guide with examples for argumentative and empirical papers.

  9. How to write a first-class paper

    Learn from six experts how to produce a manuscript that will get published and pull in readers. Get tips on clarity, structure, creativity, confidence and avoiding 'zombie nouns' in scientific writing.

  10. Writing Center

    Find out how to write a research article from start to finish, with tips on title, abstract, methods, statistics, discussion, editing and more. Explore the PLOS Writing Toolbox, author tools and resources, and training modules for publication success.

  11. HOW TO WRITE A SCIENTIFIC ARTICLE

    The task of writing a scientific paper and submitting it to a journal for publication is a time‐consuming and often daunting task. 3,4 Barriers to effective writing include lack of ... When you begin writing about your research, ... Connecting knowledge production with writing to learn in science. Sci Educ. 1999; 83:115‐130 [Google Scholar ...

  12. How to Write Your First Research Paper

    After you get enough feedback and decide on the journal you will submit to, the process of real writing begins. Copy your outline into a separate file and expand on each of the points, adding data and elaborating on the details. When you create the first draft, do not succumb to the temptation of editing.

  13. Guide: Writing the Scientific Paper

    Learn how to write a scientific paper with a standard format and clear structure. Find examples of titles, abstracts, introductions, methods, results, and discussions from different fields of study.

  14. How to Write and Publish a Scientific Paper (Project ...

    Learn the fundamentals of academic research and writing a scientific paper in this project-based course. Outline, structure, and submit your paper to a journal with guidance and feedback from instructors and peers.

  15. Research Paper

    Learn how to write a research paper with this comprehensive guide that covers the definition, structure, examples, and writing process. Find out how to choose a topic, conduct a literature review, develop a thesis, collect and analyze data, organize your paper, and cite your sources.

  16. Research paper Writing a scientific article: A step-by-step guide for

    Overall, while writing an article from scratch may appear a daunting task for many young researchers, the process can be largely facilitated by good groundwork when preparing your research project, and a systematic approach to the writing, following these simple guidelines for each section (see summary in Fig. 1). It is worth the effort of ...

  17. Scribbr

    Whether we're proofreading and editing, checking for plagiarism or AI content, generating citations, or writing useful Knowledge Base articles, our aim is to support students on their journey to become better academic writers. We believe that every student should have the right tools for academic success.

  18. Writing a Research Paper for Your Science Fair Project

    When you write your research paper you might want to copy words, pictures, diagrams, or ideas from one of your sources. It is OK to copy such information as long as you reference it with a citation. If the information is a phrase, sentence, or paragraph, then you should also put it in quotation marks. A citation and quotation marks tell the ...

  19. Writing an Introduction for a Scientific Paper

    Dr. Michelle Harris, Dr. Janet Batzli, Biocore. This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question, biological rationale, hypothesis, and general approach. If the Introduction is done well, there should be no question in the reader's mind why and on ...

  20. PDF How to Write Paper in Scientific Journal Style and Format

    v. 10‐2014. This is a reference sheet to help you remember the common format we expect you to use on your formal lab write‐ups. Refer to the "How to Write Guide" for the details. Other than the title, use 12 point type, preferably Calibri, Times New Roman, or Courier.

  21. PDF Writing a Research Paper for Your Science Fair Project

    When you write your research paper you might want to copy words, pictures, diagrams, or ideas from one of your sources. It is OK to copy such information as long as you reference it with a citation. If the information is a phrase, sentence, or paragraph, then you should also put it in quotation marks. A citation and quotation marks tell the ...

  22. Writing a Science Project Report or Research Paper

    Your report should include a title page, statement of purpose, hypothesis, materials and procedures, results and conclusions, discussion, and credits and bibliography. If applicable, graphs, tables, or charts should be included with the results portion of your report. 2. Cause and effect. This is another common science experiment research paper ...

  23. Essential Rules for Academic Writing: A Beginner's Guide

    Academic writing refers to a formal style of writing that is prevalent in academic settings such as universities, research institutions, and scholarly publications. It is a mode of communication used by students, researchers, and scholars to convey their ideas, present research findings, and engage in intellectual discourse within their ...

  24. How to Write a Research Paper

    Mastering Research Papers. Mastering the art of the research paper cannot be overstated, whether you're in high school, college, or postgraduate studies. You can confidently prepare your research paper for submission by leveraging the AI tools listed above. Research papers help refine your abilities to think critically and write persuasively.

  25. How Much Research Is Being Written by Large Language Models?

    In two papers looking at LLM use in scientific publishings, Zou and his team* found that 17.5% of computer science papers and 16.9% of peer review text had at least some content drafted by AI. The paper on LLM usage in peer reviews will be presented at the International Conference on Machine Learning.

  26. How Does Writing Fit Into the 'Science of Reading'?

    "Writing to Read: A Meta-Analysis of the Impact of Writing and Writing Instruction on Reading." Harvard Educational Review (2011) 81(4): 710-744. Graham, Steve.

  27. CS&E Announces 2024-25 Doctoral Dissertation Fellowship (DDF) Award

    Seven Ph.D. students working with CS&E professors have been named Doctoral Dissertation Fellows for the 2024-25 school year. The Doctoral Dissertation Fellowship is a highly competitive fellowship that gives the University's most accomplished Ph.D. candidates an opportunity to devote full-time effort to an outstanding research project by providing time to finalize and write a dissertation ...