how to conduct a research project

Illustration by James Round

How to plan a research project

Whether for a paper or a thesis, define your question, review the work of others – and leave yourself open to discovery.

by Brooke Harrington   + BIO

is professor of sociology at Dartmouth College in New Hampshire. Her research has won international awards both for scholarly quality and impact on public life. She has published dozens of articles and three books, most recently the bestseller Capital without Borders (2016), now translated into five languages.

Edited by Sam Haselby

Need to know

‘When curiosity turns to serious matters, it’s called research.’ – From Aphorisms (1880-1905) by Marie von Ebner-Eschenbach

Planning research projects is a time-honoured intellectual exercise: one that requires both creativity and sharp analytical skills. The purpose of this Guide is to make the process systematic and easy to understand. While there is a great deal of freedom and discovery involved – from the topics you choose, to the data and methods you apply – there are also some norms and constraints that obtain, no matter what your academic level or field of study. For those in high school through to doctoral students, and from art history to archaeology, research planning involves broadly similar steps, including: formulating a question, developing an argument or predictions based on previous research, then selecting the information needed to answer your question.

Some of this might sound self-evident but, as you’ll find, research requires a different way of approaching and using information than most of us are accustomed to in everyday life. That is why I include orienting yourself to knowledge-creation as an initial step in the process. This is a crucial and underappreciated phase in education, akin to making the transition from salaried employment to entrepreneurship: suddenly, you’re on your own, and that requires a new way of thinking about your work.

What follows is a distillation of what I’ve learned about this process over 27 years as a professional social scientist. It reflects the skills that my own professors imparted in the sociology doctoral programme at Harvard, as well as what I learned later on as a research supervisor for Ivy League PhD and MA students, and then as the author of award-winning scholarly books and articles. It can be adapted to the demands of both short projects (such as course term papers) and long ones, such as a thesis.

At its simplest, research planning involves the four distinct steps outlined below: orienting yourself to knowledge-creation; defining your research question; reviewing previous research on your question; and then choosing relevant data to formulate your own answers. Because the focus of this Guide is on planning a research project, as opposed to conducting a research project, this section won’t delve into the details of data-collection or analysis; those steps happen after you plan the project. In addition, the topic is vast: year-long doctoral courses are devoted to data and analysis. Instead, the fourth part of this section will outline some basic strategies you could use in planning a data-selection and analysis process appropriate to your research question.

Step 1: Orient yourself

Planning and conducting research requires you to make a transition, from thinking like a consumer of information to thinking like a producer of information. That sounds simple, but it’s actually a complex task. As a practical matter, this means putting aside the mindset of a student, which treats knowledge as something created by other people. As students, we are often passive receivers of knowledge: asked to do a specified set of readings, then graded on how well we reproduce what we’ve read.

Researchers, however, must take on an active role as knowledge producers . Doing research requires more of you than reading and absorbing what other people have written: you have to engage in a dialogue with it. That includes arguing with previous knowledge and perhaps trying to show that ideas we have accepted as given are actually wrong or incomplete. For example, rather than simply taking in the claims of an author you read, you’ll need to draw out the implications of those claims: if what the author is saying is true, what else does that suggest must be true? What predictions could you make based on the author’s claims?

In other words, rather than treating a reading as a source of truth – even if it comes from a revered source, such as Plato or Marie Curie – this orientation step asks you to treat the claims you read as provisional and subject to interrogation. That is one of the great pieces of wisdom that science and philosophy can teach us: that the biggest advances in human understanding have been made not by being correct about trivial things, but by being wrong in an interesting way . For example, Albert Einstein was wrong about quantum mechanics, but his arguments about it with his fellow physicist Niels Bohr have led to some of the biggest breakthroughs in science, even a century later.

Step 2: Define your research question

Students often give this step cursory attention, but experienced researchers know that formulating a good question is sometimes the most difficult part of the research planning process. That is because the precise language of the question frames the rest of the project. It’s therefore important to pose the question carefully, in a way that’s both possible to answer and likely to yield interesting results. Of course, you must choose a question that interests you, but that’s only the beginning of what’s likely to be an iterative process: most researchers come back to this step repeatedly, modifying their questions in light of previous research, resource limitations and other considerations.

Researchers face limits in terms of time and money. They, like everyone else, have to pose research questions that they can plausibly answer given the constraints they face. For example, it would be inadvisable to frame a project around the question ‘What are the roots of the Arab-Israeli conflict?’ if you have only a week to develop an answer and no background on that topic. That’s not to limit your imagination: you can come up with any question you’d like. But it typically does require some creativity to frame a question that you can answer well – that is, by investigating thoroughly and providing new insights – within the limits you face.

In addition to being interesting to you, and feasible within your resource constraints, the third and most important characteristic of a ‘good’ research topic is whether it allows you to create new knowledge. It might turn out that your question has already been asked and answered to your satisfaction: if so, you’ll find out in the next step of this process. On the other hand, you might come up with a research question that hasn’t been addressed previously. Before you get too excited about breaking uncharted ground, consider this: a lot of potentially researchable questions haven’t been studied for good reason ; they might have answers that are trivial or of very limited interest. This could include questions such as ‘Why does the area of a circle equal π r²?’ or ‘Did winter conditions affect Napoleon’s plans to invade Russia?’ Of course, you might be able to make the argument that a seemingly trivial question is actually vitally important, but you must be prepared to back that up with convincing evidence. The exercise in the ‘Learn More’ section below will help you think through some of these issues.

Finally, scholarly research questions must in some way lead to new and distinctive insights. For example, lots of people have studied gender roles in sports teams; what can you ask that hasn’t been asked before? Reinventing the wheel is the number-one no-no in this endeavour. That’s why the next step is so important: reviewing previous research on your topic. Depending on what you find in that step, you might need to revise your research question; iterating between your question and the existing literature is a normal process. But don’t worry: it doesn’t go on forever. In fact, the iterations taper off – and your research question stabilises – as you develop a firm grasp of the current state of knowledge on your topic.

Step 3: Review previous research

In academic research, from articles to books, it’s common to find a section called a ‘literature review’. The purpose of that section is to describe the state of the art in knowledge on the research question that a project has posed. It demonstrates that researchers have thoroughly and systematically reviewed the relevant findings of previous studies on their topic, and that they have something novel to contribute.

Your own research project should include something like this, even if it’s a high-school term paper. In the research planning process, you’ll want to list at least half a dozen bullet points stating the major findings on your topic by other people. In relation to those findings, you should be able to specify where your project could provide new and necessary insights. There are two basic rhetorical positions one can take in framing the novelty-plus-importance argument required of academic research:

  • Position 1 requires you to build on or extend a set of existing ideas; that means saying something like: ‘Person A has argued that X is true about gender; this implies Y, which has not yet been tested. My project will test Y, and if I find evidence to support it, that will change the way we understand gender.’
  • Position 2 is to argue that there is a gap in existing knowledge, either because previous research has reached conflicting conclusions or has failed to consider something important. For example, one could say that research on middle schoolers and gender has been limited by being conducted primarily in coeducational environments, and that findings might differ dramatically if research were conducted in more schools where the student body was all-male or all-female.

Your overall goal in this step of the process is to show that your research will be part of a larger conversation: that is, how your project flows from what’s already known, and how it advances, extends or challenges that existing body of knowledge. That will be the contribution of your project, and it constitutes the motivation for your research.

Two things are worth mentioning about your search for sources of relevant previous research. First, you needn’t look only at studies on your precise topic. For example, if you want to study gender-identity formation in schools, you shouldn’t restrict yourself to studies of schools; the empirical setting (schools) is secondary to the larger social process that interests you (how people form gender identity). That process occurs in many different settings, so cast a wide net. Second, be sure to use legitimate sources – meaning publications that have been through some sort of vetting process, whether that involves peer review (as with academic journal articles you might find via Google Scholar) or editorial review (as you’d find in well-known mass media publications, such as The Economist or The Washington Post ). What you’ll want to avoid is using unvetted sources such as personal blogs or Wikipedia. Why? Because anybody can write anything in those forums, and there is no way to know – unless you’re already an expert – if the claims you find there are accurate. Often, they’re not.

Step 4: Choose your data and methods

Whatever your research question is, eventually you’ll need to consider which data source and analytical strategy are most likely to provide the answers you’re seeking. One starting point is to consider whether your question would be best addressed by qualitative data (such as interviews, observations or historical records), quantitative data (such as surveys or census records) or some combination of both. Your ideas about data sources will, in turn, suggest options for analytical methods.

You might need to collect your own data, or you might find everything you need readily available in an existing dataset someone else has created. A great place to start is with a research librarian: university libraries always have them and, at public universities, those librarians can work with the public, including people who aren’t affiliated with the university. If you don’t happen to have a public university and its library close at hand, an ordinary public library can still be a good place to start: the librarians are often well versed in accessing data sources that might be relevant to your study, such as the census, or historical archives, or the Survey of Consumer Finances.

Because your task at this point is to plan research, rather than conduct it, the purpose of this step is not to commit you irrevocably to a course of action. Instead, your goal here is to think through a feasible approach to answering your research question. You’ll need to find out, for example, whether the data you want exist; if not, do you have a realistic chance of gathering the data yourself, or would it be better to modify your research question? In terms of analysis, would your strategy require you to apply statistical methods? If so, do you have those skills? If not, do you have time to learn them, or money to hire a research assistant to run the analysis for you?

Please be aware that qualitative methods in particular are not the casual undertaking they might appear to be. Many people make the mistake of thinking that only quantitative data and methods are scientific and systematic, while qualitative methods are just a fancy way of saying: ‘I talked to some people, read some old newspapers, and drew my own conclusions.’ Nothing could be further from the truth. In the final section of this guide, you’ll find some links to resources that will provide more insight on standards and procedures governing qualitative research, but suffice it to say: there are rules about what constitutes legitimate evidence and valid analytical procedure for qualitative data, just as there are for quantitative data.

Circle back and consider revising your initial plans

As you work through these four steps in planning your project, it’s perfectly normal to circle back and revise. Research planning is rarely a linear process. It’s also common for new and unexpected avenues to suggest themselves. As the sociologist Thorstein Veblen wrote in 1908 : ‘The outcome of any serious research can only be to make two questions grow where only one grew before.’ That’s as true of research planning as it is of a completed project. Try to enjoy the horizons that open up for you in this process, rather than becoming overwhelmed; the four steps, along with the two exercises that follow, will help you focus your plan and make it manageable.

Key points – How to plan a research project

  • Planning a research project is essential no matter your academic level or field of study. There is no one ‘best’ way to design research, but there are certain guidelines that can be helpfully applied across disciplines.
  • Orient yourself to knowledge-creation. Make the shift from being a consumer of information to being a producer of information.
  • Define your research question. Your question frames the rest of your project, sets the scope, and determines the kinds of answers you can find.
  • Review previous research on your question. Survey the existing body of relevant knowledge to ensure that your research will be part of a larger conversation.
  • Choose your data and methods. For instance, will you be collecting qualitative data, via interviews, or numerical data, via surveys?
  • Circle back and consider revising your initial plans. Expect your research question in particular to undergo multiple rounds of refinement as you learn more about your topic.

Good research questions tend to beget more questions. This can be frustrating for those who want to get down to business right away. Try to make room for the unexpected: this is usually how knowledge advances. Many of the most significant discoveries in human history have been made by people who were looking for something else entirely. There are ways to structure your research planning process without over-constraining yourself; the two exercises below are a start, and you can find further methods in the Links and Books section.

The following exercise provides a structured process for advancing your research project planning. After completing it, you’ll be able to do the following:

  • describe clearly and concisely the question you’ve chosen to study
  • summarise the state of the art in knowledge about the question, and where your project could contribute new insight
  • identify the best strategy for gathering and analysing relevant data

In other words, the following provides a systematic means to establish the building blocks of your research project.

Exercise 1: Definition of research question and sources

This exercise prompts you to select and clarify your general interest area, develop a research question, and investigate sources of information. The annotated bibliography will also help you refine your research question so that you can begin the second assignment, a description of the phenomenon you wish to study.

Jot down a few bullet points in response to these two questions, with the understanding that you’ll probably go back and modify your answers as you begin reading other studies relevant to your topic:

  • What will be the general topic of your paper?
  • What will be the specific topic of your paper?

b) Research question(s)

Use the following guidelines to frame a research question – or questions – that will drive your analysis. As with Part 1 above, you’ll probably find it necessary to change or refine your research question(s) as you complete future assignments.

  • Your question should be phrased so that it can’t be answered with a simple ‘yes’ or ‘no’.
  • Your question should have more than one plausible answer.
  • Your question should draw relationships between two or more concepts; framing the question in terms of How? or What? often works better than asking Why ?

c) Annotated bibliography

Most or all of your background information should come from two sources: scholarly books and journals, or reputable mass media sources. You might be able to access journal articles electronically through your library, using search engines such as JSTOR and Google Scholar. This can save you a great deal of time compared with going to the library in person to search periodicals. General news sources, such as those accessible through LexisNexis, are acceptable, but should be cited sparingly, since they don’t carry the same level of credibility as scholarly sources. As discussed above, unvetted sources such as blogs and Wikipedia should be avoided, because the quality of the information they provide is unreliable and often misleading.

To create an annotated bibliography, provide the following information for at least 10 sources relevant to your specific topic, using the format suggested below.

Name of author(s):
Publication date:
Title of book, chapter, or article:
If a chapter or article, title of journal or book where they appear:
Brief description of this work, including main findings and methods ( c 75 words):
Summary of how this work contributes to your project ( c 75 words):
Brief description of the implications of this work ( c 25 words):
Identify any gap or controversy in knowledge this work points up, and how your project could address those problems ( c 50 words):

Exercise 2: Towards an analysis

Develop a short statement ( c 250 words) about the kind of data that would be useful to address your research question, and how you’d analyse it. Some questions to consider in writing this statement include:

  • What are the central concepts or variables in your project? Offer a brief definition of each.
  • Do any data sources exist on those concepts or variables, or would you need to collect data?
  • Of the analytical strategies you could apply to that data, which would be the most appropriate to answer your question? Which would be the most feasible for you? Consider at least two methods, noting their advantages or disadvantages for your project.

Links & books

One of the best texts ever written about planning and executing research comes from a source that might be unexpected: a 60-year-old work on urban planning by a self-trained scholar. The classic book The Death and Life of Great American Cities (1961) by Jane Jacobs (available complete and free of charge via this link ) is worth reading in its entirety just for the pleasure of it. But the final 20 pages – a concluding chapter titled ‘The Kind of Problem a City Is’ – are really about the process of thinking through and investigating a problem. Highly recommended as a window into the craft of research.

Jacobs’s text references an essay on advancing human knowledge by the mathematician Warren Weaver. At the time, Weaver was director of the Rockefeller Foundation, in charge of funding basic research in the natural and medical sciences. Although the essay is titled ‘A Quarter Century in the Natural Sciences’ (1960) and appears at first blush to be merely a summation of one man’s career, it turns out to be something much bigger and more interesting: a meditation on the history of human beings seeking answers to big questions about the world. Weaver goes back to the 17th century to trace the origins of systematic research thinking, with enthusiasm and vivid anecdotes that make the process come alive. The essay is worth reading in its entirety, and is available free of charge via this link .

For those seeking a more in-depth, professional-level discussion of the logic of research design, the political scientist Harvey Starr provides insight in a compact format in the article ‘Cumulation from Proper Specification: Theory, Logic, Research Design, and “Nice” Laws’ (2005). Starr reviews the ‘research triad’, consisting of the interlinked considerations of formulating a question, selecting relevant theories and applying appropriate methods. The full text of the article, published in the scholarly journal Conflict Management and Peace Science , is available, free of charge, via this link .

Finally, the book Getting What You Came For (1992) by Robert Peters is not only an outstanding guide for anyone contemplating graduate school – from the application process onward – but it also includes several excellent chapters on planning and executing research, applicable across a wide variety of subject areas. It was an invaluable resource for me 25 years ago, and it remains in print with good reason; I recommend it to all my students, particularly Chapter 16 (‘The Thesis Topic: Finding It’), Chapter 17 (‘The Thesis Proposal’) and Chapter 18 (‘The Thesis: Writing It’).

how to conduct a research project

How to use ‘possibility thinking’

Have you hit an impasse in your personal or professional life? Answer these questions to open your mind to what’s possible

by Constance de Saint Laurent & Vlad Glăveanu

how to conduct a research project

The nature of reality

How to think about time

This philosopher’s introduction to the nature of time could radically alter how you see your past and imagine your future

by Graeme A Forbes

how to conduct a research project

Cognitive and behavioural therapies

How to stop living on auto-pilot

Are you going through the motions? Use these therapy techniques to set meaningful goals and build a ‘life worth living’

by Kiki Fehling

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Research: Where to Begin

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

We live in an age overflowing with sources of information. With so many information sources at our fingertips, knowing where to start, sorting through it all and finding what we want can be overwhelming! This handout provides answers to the following research-related questions: Where do I begin? Where should I look for information? What types of sources are available?

Research isn't something that only scientists and professors do. Any time you use sources to investigate claims or reach new conclusions, you are performing research. Research happens in virtually all fields, so it’s vitally important to know how to conduct research and navigate through source material regardless of your professional or academic role.

Choosing and Narrowing Your Research Topic

Before beginning the process of looking for sources, it’s important to choose a research topic that is specific enough to explore in-depth. If your focus is too broad, it will be difficult to find sources that back up what you’re trying to say.

If your instructor gives you the flexibility to choose your own research topic, you might begin by brainstorming  a list of topics that interest you ( click here to visit an OWL page that can help you get started brainstorming or prewriting ). Once you find something that grabs your attention, the next step is to narrow your topic to a manageable scope. Some ways to narrow your focus are by sub-topic, demographic, or time period.

For example, suppose that you want to research cancer treatments. Cancer treatment is a fairly broad topic, so you would be wise to at least consider narrowing your scope. For example, you could focus on a sub-topic of cancer treatment, such as chemotherapy or radiation therapy. However, these are still broad topics, so you might also narrow your topic to a narrower sub-topic or even examine how these topics relate to a specific demographic or time period. In the end, you might decide to research how radiation therapy for women over fifty has changed in the past twenty years. In sum, having a specific idea of what you want to research helps you find a topic that feels more manageable.

Writing Your Research Question

Writing your research topic as a question helps you focus your topic in a clear and concise way. It ensure that your topic is arguable. While not all research papers have to offer an explicit argument, many do.

For the above example, you might phrase your research question like this: "How has radiation therapy changed in the past twenty years for women over fifty?" Of course, phrasing this topic as a question assumes that the research has, in fact, changed. Reading your sources (or, to begin with, at least summaries and abstracts of those sources) will help you formulate a research question that makes sense.

Knowing What Types of Sources You Need

Depending on the type of research you’re doing, you may need to use different types of sources. Research is usually divided into scholarly and popular, and primary and secondary. For more information on specific details about these types of sources, visit our "Where to Begin" page in our "Evaluating Sources" subsection.  This subsection contains additional pages that explore various kinds of sources (like, e.g., internet sources) in more detail.

Asking Productive Questions

Before you begin your research, you should ask yourself questions that help narrow your search parameters.

What kind of information are you looking for?

Different types of research will require different sources. It’s important to know what kinds of sources your research demands. Ask whether you need facts or opinions, news reports, research studies, statistics and data, personal reflections, archival research, etc. Restricting yourself to only the most relevant kinds of sources will make the research process seem less daunting.

Where do you need to look for your research?

Your research topic will also dictate where you find your sources. This extends beyond simply whether you use the internet or a print source. For example, if you are searching for information on a current event, a well-regarded newspaper like the  New York Times  or  Wall Street Journal  could  be a useful source. If you are searching for statistics on some aspect of the U.S. population, then you might want to start with government documents, such as census reports. While much high-level academic research relies mainly on the sorts of academic journal articles and scholarly books that can be found in university libraries, depending the nature of your research project, you may need to look elsewhere.

How much information do you need?

Different research projects require different numbers of sources. For example, if you need to address both sides of a controversial issue, you may need to find more sources than if you were pursuing a non-controversial topic. Be sure to speak with your instructor if you are unclear on how many sources you will be expected to use.

How timely does your research need to be?

Depending on your research topic, the timeliness of your source may or may not matter. For example, if you are looking into recent changes in a specific scientific field, you would want the most up-to-date research. However, if you were researching the War of 1812, you might benefit from finding primary sources written during that time period.

Key Steps in the Research Process - A Comprehensive Guide

Harish M

Embarking on a research journey can be both thrilling and challenging. Whether you're a student, journalist, or simply inquisitive about a subject, grasping the research process steps is vital for conducting thorough and efficient research. In this all-encompassing guide, we'll navigate you through the pivotal stages of what is the research process, from pinpointing your topic to showcasing your discoveries.

We'll delve into how to formulate a robust research question, undertake preliminary research, and devise a structured research plan. You'll acquire strategies for gathering and scrutinizing data, along with advice for effectively disseminating your findings. By adhering to these steps in the research process, you'll be fully prepared to confront any research endeavor that presents itself.

Step 1: Identify and Develop Your Topic

Identifying and cultivating a research topic is the foundational first step in the research process. Kick off by brainstorming potential subjects that captivate your interest, as this will fuel your enthusiasm throughout the endeavor. 

Employ the following tactics to spark ideas and understand what is the first step in the research process:

  • Review course materials, lecture notes, and assigned readings for inspiration
  • Engage in discussions with peers, professors, or experts in the field
  • Investigate current events, news pieces, or social media trends pertinent to your field of study to uncover valuable market research insights.
  • Reflect on personal experiences or observations that have sparked your curiosity

Once you've compiled a roster of possible topics, engage in preliminary research to evaluate the viability and breadth of each concept. This initial probe may encompass various research steps and procedures to ensure a comprehensive understanding of the topics at hand.

  • Scanning Wikipedia articles or other general reference sources for an overview
  • Searching for scholarly articles, books, or media related to your topic
  • Identifying key concepts, theories, or debates within the field
  • Considering the availability of primary sources or data for analysis

While amassing background knowledge, begin to concentrate your focus and hone your topic. Target a subject that is specific enough to be feasible within your project's limits, yet expansive enough to permit substantial analysis. Mull over the following inquiries to steer your topic refinement and address the research problem effectively:

  • What aspect of the topic am I most interested in exploring?
  • What questions or problems related to this topic remain unanswered or unresolved?
  • How can I contribute new insights or perspectives to the existing body of knowledge?
  • What resources and methods will I need to investigate this topic effectively?

Step 2: Conduct Preliminary Research

Having pinpointed a promising research topic, it's time to plunge into preliminary research. This essential phase enables you to deepen your grasp of the subject and evaluate the practicality of your project. Here are some pivotal tactics for executing effective preliminary research using various library resources:

  • Literature Review

To effectively embark on your scholarly journey, it's essential to consult a broad spectrum of sources, thereby enriching your understanding with the breadth of academic research available on your topic. This exploration may encompass a variety of materials.

  • Online catalogs of libraries (local, regional, national, and special)
  • Meta-catalogs and subject-specific online article databases
  • Digital institutional repositories and open access resources
  • Works cited in scholarly books and articles
  • Print bibliographies and internet sources
  • Websites of major nonprofit organizations, research institutes, museums, universities, and government agencies
  • Trade and scholarly publishers
  • Discussions with fellow scholars and peers
  • Identify Key Debates

Engaging with the wealth of recently published materials and seminal works in your field is a pivotal part of the research process definition. Focus on discerning the core ideas, debates, and arguments that define your topic, which will in turn sharpen your research focus and guide you toward formulating pertinent research questions.

  • Narrow Your Focus

Hone your topic by leveraging your initial findings to tackle a specific issue or facet within the larger subject, a fundamental step in the research process steps. Consider various factors that could influence the direction and scope of your inquiry.

  • Subtopics and specific issues
  • Key debates and controversies
  • Timeframes and geographical locations
  • Organizations or groups of people involved

A thorough evaluation of existing literature and a comprehensive assessment of the information at hand will pinpoint the exact dimensions of the issue you aim to explore. This methodology ensures alignment with prior research, optimizes resources, and can bolster your case when seeking research funding by demonstrating a well-founded approach.

Step 3: Establish Your Research Question

Having completed your preliminary research and topic refinement, the next vital phase involves formulating a precise and focused research question. This question, a cornerstone among research process steps, will steer your investigation, keeping it aligned with relevant data and insights. When devising your research question, take into account these critical factors:

Initiate your inquiry by defining the requirements and goals of your study, a key step in the research process steps. Whether you're testing a hypothesis, analyzing data, or constructing and supporting an argument, grasping the intent of your research is crucial for framing your question effectively.

Ensure that your research question is feasible, given your constraints in time and word count, an important consideration in the research process steps. Steer clear of questions that are either too expansive or too constricted, as they may impede your capacity to conduct a comprehensive analysis.

Your research question should transcend a mere 'yes' or 'no' response, prompting a thorough engagement with the research process steps. It should foster a comprehensive exploration of the topic, facilitating the analysis of issues or problems beyond just a basic description.

  • Researchability

Ensure that your research question opens the door to quality research materials, including academic books and refereed journal articles. It's essential to weigh the accessibility of primary data and secondary data that will bolster your investigative efforts.

When establishing your research question, take the following steps:

  • Identify the specific aspect of your general topic that you want to explore
  • Hypothesize the path your answer might take, developing a hypothesis after formulating the question
  • Steer clear of certain types of questions in your research process steps, such as those that are deceptively simple, fictional, stacked, semantic, impossible-to-answer, opinion or ethical, and anachronistic, to maintain the integrity of your inquiry.
  • Conduct a self-test on your research question to confirm it adheres to the research process steps, ensuring it is flexible, testable, clear, precise, and underscores a distinct reason for its importance.

By meticulously formulating your research question, you're establishing a solid groundwork for the subsequent research process steps, guaranteeing that your efforts are directed, efficient, and yield productive outcomes.

Step 4: Develop a Research Plan

Having formulated a precise research question, the ensuing phase involves developing a detailed research plan. This plan, integral to the research process steps, acts as a navigational guide for your project, keeping you organized, concentrated, and on a clear path to accomplishing your research objectives. When devising your research plan, consider these pivotal components:

  • Project Goals and Objectives

Articulate the specific aims and objectives of your research project with clarity. These should be in harmony with your research question and provide a structured framework for your investigation, ultimately aligning with your overarching business goals.

  • Research Methods

Select the most appropriate research tools and statistical methods to address your question effectively. This may include a variety of qualitative and quantitative approaches to ensure comprehensive analysis.

  • Quantitative methods (e.g., surveys, experiments)
  • Qualitative methods (e.g., interviews, focus groups)
  • Mixed methods (combining quantitative and qualitative approaches)
  • Access to databases, archives, or special collections
  • Specialized equipment or software
  • Funding for travel, materials, or participant compensation
  • Assistance from research assistants, librarians, or subject matter experts
  • Participant Recruitment

If your research involves human subjects, develop a strategic plan for recruiting participants. Consider factors such as the inclusion of diverse ethnic groups and the use of user interviews to gather rich, qualitative data.

  • Target population and sample size
  • Inclusion and exclusion criteria
  • Recruitment strategies (e.g., flyers, social media, snowball sampling)
  • Informed consent procedures
  • Instruments or tools for gathering data (e.g., questionnaires, interview guides)
  • Data storage and management protocols
  • Statistical or qualitative analysis techniques
  • Software or tools for data analysis (e.g., SPSS, NVivo)

Create a realistic project strategy for your research project, breaking it down into manageable stages or milestones. Consider factors such as resource availability and potential bottlenecks.

  • Literature review and background research
  • IRB approval (if applicable)
  • Participant recruitment and data collection
  • Data analysis and interpretation
  • Writing and revising your findings
  • Dissemination of results (e.g., presentations, publications)

By developing a comprehensive research plan, incorporating key research process steps, you'll be better equipped to anticipate challenges, allocate resources effectively, and ensure the integrity and rigor of your research process. Remember to remain flexible and adaptable to navigate unexpected obstacles or opportunities that may arise.

Step 5: Conduct the Research

With your research plan in place, it's time to dive into the data collection phase. As you conduct your research, adhere to the established research process steps to ensure the integrity and quality of your findings.

Conduct your research in accordance with federal regulations, state laws, institutional SOPs, and policies. Familiarize yourself with the IRB-approved protocol and follow it diligently, as part of the essential research process steps.

  • Roles and Responsibilities

Understand and adhere to the roles and responsibilities of the principal investigator and other research team members. Maintain open communication lines with all stakeholders, including the sponsor and IRB, to foster cross-functional collaboration.

  • Data Management

Develop and maintain an effective system for data collection and storage, utilizing advanced research tools. Ensure that each member of the research team has seamless access to the most up-to-date documents, including the informed consent document, protocol, and case report forms.

  • Quality Assurance

Implement comprehensive quality assurance measures to verify that the study adheres strictly to the IRB-approved protocol, institutional policy, and all required regulations. Confirm that all study activities are executed as planned and that any deviations are addressed with precision and appropriateness.

  • Participant Eligibility

As part of the essential research process steps, verify that potential study subjects meet all eligibility criteria and none of the ineligibility criteria before advancing with the research.

To maintain the highest standards of academic integrity and ethical conduct:

  • Conduct research with unwavering honesty in all facets, including experimental design, data generation, and analysis, as well as the publication of results, as these are critical research process steps.
  • Maintain a climate conducive to conducting research in strict accordance with good research practices, ensuring each step of the research process is meticulously observed.
  • Provide appropriate supervision and training for researchers.
  • Encourage open discussion of ideas and the widest dissemination of results possible.
  • Keep clear and accurate records of research methods and results.
  • Exercise a duty of care to all those involved in the research.

When collecting and assimilating data:

  • Use professional online data analysis tools to streamline the process.
  • Use metadata for context
  • Assign codes or labels to facilitate grouping or comparison
  • Convert data into different formats or scales for compatibility
  • Organize documents in both the study participant and investigator's study regulatory files, creating a central repository for easy access and reference, as this organization is a pivotal step in the research process.

By adhering to these guidelines and upholding a commitment to ethical and rigorous research practices, you'll be well-equipped to conduct your research effectively and contribute meaningful insights to your field of study, thereby enhancing the integrity of the research process steps.

Step 6: Analyze and Interpret Data

Embarking on the research process steps, once you have gathered your research data, the subsequent critical phase is to delve into analysis and interpretation. This stage demands a meticulous examination of the data, spotting trends, and forging insightful conclusions that directly respond to your research question. Reflect on these tactics for a robust approach to data analysis and interpretation:

  • Organize and Clean Your Data

A pivotal aspect of the research process steps is to start by structuring your data in an orderly and coherent fashion. This organizational task may encompass:

  • Creating a spreadsheet or database to store your data
  • Assigning codes or labels to facilitate grouping or comparison
  • Cleaning the data by removing any errors, inconsistencies, or missing values
  • Converting data into different formats or scales for compatibility
  • Calculating measures of central tendency (mean, median, mode)
  • Determining measures of variability (range, standard deviation)
  • Creating frequency tables or histograms to visualize the distribution of your data
  • Identifying any outliers or unusual patterns in your data
  • Perform Inferential Analysis

Integral to the research process steps, you might engage in inferential analysis to evaluate hypotheses or extrapolate findings to a broader demographic, contingent on your research design and query. This analytical step may include:

  • Selecting appropriate statistical tests (e.g., t-tests, ANOVA, regression analysis)
  • As part of the research process steps, establishing a significance threshold (e.g., p < 0.05) is essential to gauge the likelihood of your results being a random occurrence rather than a significant finding.
  • Interpreting the results of your statistical tests in the context of your research question
  • Considering the practical significance of your findings, in addition to statistical significance

When interpreting your data, it's essential to:

  • Look for relationships, patterns, and trends in your data
  • Consider alternative explanations for your findings
  • Acknowledge any limitations or potential biases in your research design or data collection
  • Leverage data visualization techniques such as graphs, charts, and infographics to articulate your research findings with clarity and impact, thereby enhancing the communicative value of your data.
  • Seek feedback from peers, mentors, or subject matter experts to validate your interpretations

It's important to recognize that data interpretation is a cyclical process that hinges on critical thinking, inventiveness, and the readiness to refine your conclusions with emerging insights. By tackling data analysis and interpretation with diligence and openness, you're setting the stage to derive meaningful and justifiable inferences from your research, in line with the research process steps.

Step 7: Present the Findings

After meticulous analysis and interpretation of your research findings, as dictated by the research process steps, the moment arrives to disseminate your insights. Effectively presenting your research is key to captivating your audience and conveying the importance of your findings. Employ these strategies to create an engaging and persuasive presentation:

  • Organize Your Findings : 

Use the PEEL method to structure your presentation:

  • Point: Clearly state your main argument or finding
  • Evidence: Present the data and analysis that support your point
  • Explanation: Provide context and interpret the significance of your evidence
  • Link: Connect your findings to the broader research question or field
  • Tailor Your Message

Understanding your audience is crucial to effective communication. When presenting your research, it's important to tailor your message to their background, interests, and level of expertise, effectively employing user personas to guide your approach.

  • Use clear, concise language and explain technical terms
  • Highlight what makes your research unique and impactful
  • Craft a compelling narrative with a clear structure and hook
  • Share the big picture, emphasizing the significance of your findings
  • Engage Your Audience : Make your presentation enjoyable and memorable by incorporating creative elements:
  • Use visual aids, such as tables, charts, and graphs, to communicate your findings effectively
  • To vividly convey your research journey, consider employing storytelling techniques, such as UX comics or storyboards, which can make complex information more accessible and engaging.
  • Injecting humor and personality into your presentation can be a powerful tool for communication. Utilize funny messages or GIFs to lighten the mood, breaking up tension and refocusing attention, thereby enhancing the effectiveness of humor in communication.

By adhering to these strategies, you'll be well-prepared to present your research findings in a manner that's both clear and captivating. Ensure you follow research process steps such as citing your sources accurately and discussing the broader implications of your work, providing actionable recommendations, and delineating the subsequent phases for integrating your findings into broader practice or policy frameworks.

The research process is an intricate journey that demands meticulous planning, steadfast execution, and incisive analysis. By adhering to the fundamental research process steps outlined in this guide, from pinpointing your topic to showcasing your findings, you're setting yourself up for conducting research that's both effective and influential. Keep in mind that the research journey is iterative, often necessitating revisits to certain stages as fresh insights surface or unforeseen challenges emerge.

As you commence your research journey, seize the chance to contribute novel insights to your field and forge a positive global impact. By tackling your research with curiosity, integrity, and a dedication to excellence, you're paving the way towards attaining your research aspirations and making a substantial difference with your work, all while following the critical research process steps.

Sign up for more like this.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 9 April 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

how to conduct a research project

How to Conduct Effective Research: Tips and Tricks for Beginners

  • 11 July 2023

how to conduct a research project

Introduction

Research serves as the foundation for advances in every conceivable subject and is the cornerstone of progress. Starting a research journey can be intimidating for novices. But if you have the correct tools and approaches, it may be a worthwhile endeavor. This blog article seeks to instruct new researchers on how to conduct fruitful research by offering helpful advice and strategies to help them become productive researchers.

1. Define Your Research Question

Determining your research question is the first stage in conducting successful research. A well-crafted question gives you direction and helps you focus your efforts on a certain objective. Ask a question that is as specific as you can. A better inquiry may be, “How is climate change affecting crop production in California?” rather than, “What are the effects of climate change?”

2. Develop a Research Plan

A roadmap is essential for effective research. Describe your strategy while considering the type of information you require, potential sources, and a rough time frame. You can effectively manage your time by taking this step, which will also give your research structure and keep you on track.

3. Understand the Types of Research

There are two basic categories of research: primary and secondary. Primary research is when you collect your own first-hand information, such as through surveys or experiments. Using information gathered by another person, such as data from books, papers, or scholarly articles, is known as secondary research. Knowing the difference can help you choose the approach that best fits your research issue and available resources.

4. Use a Variety of Sources

Your research’s scope and depth are constrained if you rely solely on one type of source. Utilize a variety of credible websites, books, scholarly articles, podcasts, and even multimedia sources like documentaries. Remember that the trustworthiness of your study is influenced by the caliber of your sources.

5. Learn How to Use Databases Effectively

Your time will be much reduced if you learn how to use databases. Scholarly articles can be found in abundance in databases like JSTOR, PubMed, and Google Scholar, among others. Recall that various databases have various advantages; thus, investigate a few to determine which ones best meet your requirements.

6. Master Effective Search Techniques

The research process can be significantly sped up by using excellent search techniques. Learn how to broaden or narrow your search using Boolean operators (AND, OR, NOT), phrase searching using quotation marks, and truncation symbols. You can quickly uncover additional pertinent sources using these methods.

7. Evaluate Your Sources

Information is not all created equal. Always assess the trustworthiness and veracity of your sources. Verify the author’s credentials, the publishing date, and the veracity of the information. Websites with the.edu,.gov, or.org extensions are usually more trustworthy than those with the.com extension.

8. Keep Track of Your Sources

To properly reference your sources and prevent plagiarism, keeping track of them is crucial. Making a system (such as a spreadsheet) where you enter all the relevant citation data as you go is an excellent practice. Also very beneficial are reference management programs like EndNote, Mendeley, or Zotero..

9. Take Effective Notes

Making thorough notes can help you remember knowledge and draw connections across sources. To improve understanding, try to summarise the main ideas in your own words. To show the data and connections, you can also utilize charts, mind maps, or colors.

10. Analyze and Synthesize Your Findings

Making meaning of the information you have gathered involves analysis and synthesis. You must comprehend the situation, evaluate many points of view, spot trends, and reach conclusions. The development of your arguments or the development of your hypotheses depends on this step.

11. Don’t Be Afraid to Ask for Help

Finally, if you are stuck, don’t be afraid to seek for assistance. Teachers, classmates with more expertise, and librarians can all offer helpful advice. Keep in mind that even experienced researchers occasionally require help.

One size does not fit all when it comes to research. Different projects call for various approaches and plans. However, you can become a successful researcher by defining your question, creating a plan, utilizing a variety of sources, learning efficient search strategies, evaluating your sources, keeping track of references, taking good notes, analyzing and synthesizing data, and asking for assistance when necessary. The most crucial advice is to always be curious and to keep learning. Enjoy your research!

It’s important to keep in mind that understanding how to perform excellent research is a journey that requires constant practice, learning, and development. Research can be a fulfilling and enlightening experience as you gain experience and get more familiar with the procedure. Wishing you well as you pursue your research!

Share This Post:

Leave feedback about this cancel reply.

  • Quality 5 4 3 2 1
  • Price 5 4 3 2 1
  • Service 5 4 3 2 1
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications

How to Get Started With a Research Project

Last Updated: October 3, 2023 Fact Checked

This article was co-authored by Chris Hadley, PhD . Chris Hadley, PhD is part of the wikiHow team and works on content strategy and data and analytics. Chris Hadley earned his PhD in Cognitive Psychology from UCLA in 2006. Chris' academic research has been published in numerous scientific journals. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 311,547 times.

You'll be required to undertake and complete research projects throughout your academic career and even, in many cases, as a member of the workforce. Don't worry if you feel stuck or intimidated by the idea of a research project, with care and dedication, you can get the project done well before the deadline!

Development and Foundation

Step 1 Brainstorm an idea or identify a problem or question.

  • Don't hesitate while writing down ideas. You'll end up with some mental noise on the paper – silly or nonsensical phrases that your brain just pushes out. That's fine. Think of it as sweeping the cobwebs out of your attic. After a minute or two, better ideas will begin to form (and you might have a nice little laugh at your own expense in the meantime).

Step 2 Use the tools you've already been given.

  • Some instructors will even provide samples of previously successful topics if you ask for them. Just be careful that you don't end up stuck with an idea you want to do, but are afraid to do because you know someone else did it before.

Step 4 Think from all angles.

  • For example, if your research topic is “urban poverty,” you could look at that topic across ethnic or sexual lines, but you could also look into corporate wages, minimum wage laws, the cost of medical benefits, the loss of unskilled jobs in the urban core, and on and on. You could also try comparing and contrasting urban poverty with suburban or rural poverty, and examine things that might be different about both areas, such as diet and exercise levels, or air pollution.

Step 5 Synthesize specific topics.

  • Think in terms of questions you want answered. A good research project should collect information for the purpose of answering (or at least attempting to answer) a question. As you review and interconnect topics, you'll think of questions that don't seem to have clear answers yet. These questions are your research topics.

Step 7 Brush across information you have access to.

  • Don't limit yourself to libraries and online databases. Think in terms of outside resources as well: primary sources, government agencies, even educational TV programs. If you want to know about differences in animal population between public land and an Indian reservation, call the reservation and see if you can speak to their department of fish and wildlife.
  • If you're planning to go ahead with original research, that's great – but those techniques aren't covered in this article. Instead, speak with qualified advisors and work with them to set up a thorough, controlled, repeatable process for gathering information.

Step 8 Clearly define your project.

  • If your plan comes down to “researching the topic,” and there aren't any more specific things you can say about it, write down the types of sources you plan to use instead: books (library or private?), magazines (which ones?), interviews, and so on. Your preliminary research should have given you a solid idea of where to begin.

Expanding Your Idea with Research

Step 1 Start with the basics.

  • It's generally considered more convincing to source one item from three different authors who all agree on it than it is to rely too heavily on one book. Go for quantity at least as much as quality. Be sure to check citations, endnotes, and bibliographies to get more potential sources (and see whether or not all your authors are just quoting the same, older author).
  • Writing down your sources and any other relevant details (such as context) around your pieces of information right now will save you lots of trouble in the future.

Step 2 Move outward.

  • Use many different queries to get the database results you want. If one phrasing or a particular set of words doesn't yield useful results, try rephrasing it or using synonymous terms. Online academic databases tend to be dumber than the sum of their parts, so you'll have to use tangentially related terms and inventive language to get all the results you want.

Step 3 Gather unusual sources.

  • If it's sensible, consider heading out into the field and speaking to ordinary people for their opinions. This isn't always appropriate (or welcomed) in a research project, but in some cases, it can provide you with some excellent perspective for your research.
  • Review cultural artifacts as well. In many areas of study, there's useful information on attitudes, hopes, and/or concerns of people in a particular time and place contained within the art, music, and writing they produced. One has only to look at the woodblock prints of the later German Expressionists, for example, to understand that they lived in a world they felt was often dark, grotesque, and hopeless. Song lyrics and poetry can likewise express strong popular attitudes.

Step 4 Review and trim.

Expert Q&A

Chris Hadley, PhD

  • Start early. The foundation of a great research project is the research, which takes time and patience to gather even if you aren't performing any original research of your own. Set aside time for it whenever you can, at least until your initial gathering phase is complete. Past that point, the project should practically come together on its own. Thanks Helpful 1 Not Helpful 0
  • When in doubt, write more, rather than less. It's easier to pare down and reorganize an overabundance of information than it is to puff up a flimsy core of facts and anecdotes. Thanks Helpful 1 Not Helpful 0

how to conduct a research project

  • Respect the wishes of others. Unless you're a research journalist, it's vital that you yield to the wishes and requests of others before engaging in original research, even if it's technically ethical. Many older American Indians, for instance, harbor a great deal of cultural resentment towards social scientists who visit reservations for research, even those invited by tribal governments for important reasons such as language revitalization. Always tread softly whenever you're out of your element, and only work with those who want to work with you. Thanks Helpful 8 Not Helpful 2
  • Be mindful of ethical concerns. Especially if you plan to use original research, there are very stringent ethical guidelines that must be followed for any credible academic body to accept it. Speak to an advisor (such as a professor) about what you plan to do and what steps you should take to verify that it will be ethical. Thanks Helpful 6 Not Helpful 2

You Might Also Like

Be a Successful High School Student

  • ↑ http://www.butte.edu/departments/cas/tipsheets/research/research_paper.html
  • ↑ https://www.nhcc.edu/academics/library/doing-library-research/basic-steps-research-process
  • ↑ https://library.sacredheart.edu/c.php?g=29803&p=185905
  • ↑ https://owl.purdue.edu/owl/general_writing/common_writing_assignments/research_papers/choosing_a_topic.html
  • ↑ https://www.unr.edu/writing-speaking-center/student-resources/writing-speaking-resources/using-an-interview-in-a-research-paper
  • ↑ https://www.science.org/content/article/how-review-paper

About This Article

Chris Hadley, PhD

The easiest way to get started with a research project is to use your notes and other materials to come up with topics that interest you. Research your favorite topic to see if it can be developed, and then refine it into a research question. Begin thoroughly researching, and collect notes and sources. To learn more about finding reliable and helpful sources while you're researching, continue reading! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Anonymous

Jun 30, 2016

Did this article help you?

Maooz Asghar

Maooz Asghar

Aug 14, 2016

Jun 27, 2016

Calvin Kiyondi

Calvin Kiyondi

Apr 24, 2017

Anonymous

Nov 2, 2016

Am I a Narcissist or an Empath Quiz

Featured Articles

Be Clean

Trending Articles

View an Eclipse

Watch Articles

Make Sticky Rice Using Regular Rice

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

15 Steps to Good Research

  • Define and articulate a research question (formulate a research hypothesis). How to Write a Thesis Statement (Indiana University)
  • Identify possible sources of information in many types and formats. Georgetown University Library's Research & Course Guides
  • Judge the scope of the project.
  • Reevaluate the research question based on the nature and extent of information available and the parameters of the research project.
  • Select the most appropriate investigative methods (surveys, interviews, experiments) and research tools (periodical indexes, databases, websites).
  • Plan the research project. Writing Anxiety (UNC-Chapel Hill) Strategies for Academic Writing (SUNY Empire State College)
  • Retrieve information using a variety of methods (draw on a repertoire of skills).
  • Refine the search strategy as necessary.
  • Write and organize useful notes and keep track of sources. Taking Notes from Research Reading (University of Toronto) Use a citation manager: Zotero or Refworks
  • Evaluate sources using appropriate criteria. Evaluating Internet Sources
  • Synthesize, analyze and integrate information sources and prior knowledge. Georgetown University Writing Center
  • Revise hypothesis as necessary.
  • Use information effectively for a specific purpose.
  • Understand such issues as plagiarism, ownership of information (implications of copyright to some extent), and costs of information. Georgetown University Honor Council Copyright Basics (Purdue University) How to Recognize Plagiarism: Tutorials and Tests from Indiana University
  • Cite properly and give credit for sources of ideas. MLA Bibliographic Form (7th edition, 2009) MLA Bibliographic Form (8th edition, 2016) Turabian Bibliographic Form: Footnote/Endnote Turabian Bibliographic Form: Parenthetical Reference Use a citation manager: Zotero or Refworks

Adapted from the Association of Colleges and Research Libraries "Objectives for Information Literacy Instruction" , which are more complete and include outcomes. See also the broader "Information Literacy Competency Standards for Higher Education."

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

How to Conduct Responsible Research: A Guide for Graduate Students

Alison l. antes.

1 Department of Medicine, Division of General Medical Sciences, Washington University School of Medicine, St. Louis, Missouri, 314-362-6006

Leonard B. Maggi, Jr.

2 Department of Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, 314-362-4102

Researchers must conduct research responsibly for it to have an impact and to safeguard trust in science. Essential responsibilities of researchers include using rigorous, reproducible research methods, reporting findings in a trustworthy manner, and giving the researchers who contributed appropriate authorship credit. This “how-to” guide covers strategies and practices for doing reproducible research and being a responsible author. The article also covers how to utilize decision-making strategies when uncertain about the best way to proceed in a challenging situation. The advice focuses especially on graduate students but is appropriate for undergraduates and experienced researchers. The article begins with an overview of the responsible conduct of research, research misconduct, and ethical behavior in the scientific workplace. The takeaway message is that responsible conduct of research requires a thoughtful approach to doing research to ensure trustworthy results and conclusions and that researchers receive fair credit.

INTRODUCTION

Doing research is stimulating and fulfilling work. Scientists make discoveries to build knowledge and solve problems, and they work with other dedicated researchers. Research is a highly complex activity, so it takes years for beginning researchers to learn everything they need to know to do science well. Part of this large body of knowledge is learning how to do research responsibly. Our purpose in this article is to provide graduate students a guide for how to perform responsible research. Our advice is also relevant to undergraduate researchers and for principal investigators (PIs), postdocs, or other researchers who mentor beginning researchers and wish to share our advice.

We begin by introducing some fundamentals about the responsible conduct of research (RCR), research misconduct, and ethical behavior. We focus on how to do reproducible science and be a responsible author. We provide practical advice for these topics and present scenarios to practice thinking through challenges in research. Our article concludes with decision-making strategies for addressing complex problems.

What is the responsible conduct of research?

To be committed to RCR means upholding the highest standards of honesty, accuracy, efficiency, and objectivity ( Steneck, 2007 ). Each day, RCR requires engaging in research in a conscientious, intentional fashion that yields the best science possible ( “Research Integrity is Much More Than Misconduct,” 2019 ). We adopt a practical, “how-to” approach, discussing the behaviors and habits that yield responsible research. However, some background knowledge about RCR is helpful to frame our discussion.

The scientific community uses many terms to refer to ethical and responsible behavior in research: responsible conduct of research, research integrity, scientific integrity, and research ethics ( National Academies of Science, 2009 ; National Academies of Sciences Engineering and Medicine, 2017 ; Steneck, 2007 ). A helpful way to think about these concepts is “doing good science in a good manner” ( DuBois & Antes, 2018 ). This means that the way researchers do their work, from experimental procedures to data analysis and interpretation, research reporting, and so on, leads to trustworthy research findings and conclusions. It also includes respectful interactions among researchers both within research teams (e.g., between peers, mentors and trainees, and collaborators) and with researchers external to the team (e.g., peer reviewers). We expand on trainee-mentor relationships and interpersonal dynamics with labmates in a companion article ( Antes & Maggi, 2021 ). When research involves human or animal research subjects, RCR includes protecting the well-being of research subjects.

We do not cover all potential RCR topics but focus on what we consider fundamentals for graduate students. Common topics covered in texts and courses on RCR include the following: authorship and publication; collaboration; conflicts of interest; data management, sharing, and ownership; intellectual property; mentor and trainee responsibilities; peer review; protecting human subjects; protecting animal subjects; research misconduct; the role of researchers in society; and laboratory safety. A number of topics prominently discussed among the scientific community in recent years are also relevant to RCR. These include the reproducibility of research ( Baker, 2016 ; Barba, 2016 ; Winchester, 2018 ), diversity and inclusion in science ( Asplund & Welle, 2018 ; Hofstra et al., 2020 ; Meyers, Brown, Moneta-Koehler, & Chalkley, 2018 ; National Academies of Sciences Engineering and Medicine, 2018a ; Roper, 2019 ), harassment and bullying ( Else, 2018 ; National Academies of Sciences Engineering and Medicine, 2018b ; “ No Place for Bullies in Science,” 2018 ), healthy research work environments ( Norris, Dirnagl, Zigmond, Thompson-Peer, & Chow, 2018 ; “ Research Institutions Must Put the Health of Labs First,” 2018 ), and the mental health of graduate students ( Evans, Bira, Gastelum, Weiss, & Vanderford, 2018 ).

The National Institutes of Health (NIH) ( National Institutes of Health, 2009 ) and the National Science Foundation ( National Science Foundation, 2017 ) have formal policies indicating research trainees must receive education in RCR. Researchers are accountable to these funding agencies and the public which supports research through billions in tax dollars annually. The public stands to benefit from, or be harmed by, research. For example, the public may be harmed if medical treatments or social policies are based on untrustworthy research findings. Funding for research, participation in research, and utilization of the fruits of research all rely on public trust ( Resnik, 2011 ). Trustworthy findings are also essential for good stewardship of scarce resources ( Emanuel, Wendler, & Grady, 2000 ). Researchers are further accountable to their peers, colleagues, and scientists more broadly. Trust in the work of other researchers is essential for science to advance. Finally, researchers are accountable for complying with the rules and policies of their universities or research institutions, such as rules about laboratory safety, bullying and harassment, and the treatment of animal research subjects.

What is research misconduct?

When researchers intentionally misrepresent or manipulate their results, these cases of scientific fraud often make the news headlines ( Chappell, 2019 ; O’Connor, 2018 ; Park, 2012 ), and they can seriously undermine public trust in research. These cases also harm trust within the scientific community.

The U.S. defines research misconduct as fabrication, falsification, and plagiarism (FFP) ( Department of Health and Human Services, 2005 ). FFP violate the fundamental ethical principle of honesty. Fabrication is making up data, and falsification is manipulating or changing data or results so they are no longer truthful. Plagiarism is a form of dishonesty because it includes using someone’s words or ideas and portraying them as your own. When brought to light, misconduct involves lengthy investigations and serious consequences, such as ineligibility to receive federal research funding, loss of employment, paper retractions, and, for students, withdrawal of graduate degrees.

One aspect of responsible behavior includes addressing misconduct if you observe it. We suggest a guide titled “Responding to Research Wrongdoing: A User-Friendly Guide” that provides advice for thinking about your options if you think you have observed misconduct ( Keith-Spiegel, Sieber, & Koocher, 2010 ). Your university will have written policies and procedures for investigating allegations of misconduct. Making an allegation is very serious. As Keith-Spiegel et al.’s guide indicates, it is important to know the evidence that supports your claim, and what to expect in the process. We encourage, if possible, talking to the persons involved first. For example, one of us knew of a graduate student who reported to a journal editor their suspicion of falsified data in a manuscript. It turned out that the student was incorrect. Going above the PI directly to the editor ultimately led to the PI leaving the university, and the student had a difficult time finding a new lab to complete their degree. If the student had first spoken to the PI and lab members, they could have learned that their assumptions about the data in the paper were wrong. In turn, they could have avoided accusing the PI of a serious form of scientific misconduct—making up data—and harming everyone’s scientific career.

What shapes ethical behavior in the scientific workplace?

Responsible conduct of research and research misconduct are two sides of a continuum of behavior—RCR upholds the ideals of research and research misconduct violates them. Problematic practices that fall in the middle but are not defined formally as research misconduct have been labeled as detrimental research practices ( National Academies of Sciences Engineering and Medicine, 2017 ). Researchers conducting misleading statistical analyses or PIs providing inadequate supervision are examples of the latter. Research suggests that characteristics of individual researchers and research environments explain (un)ethical behavior in the scientific workplace ( Antes et al., 2007 ; Antes, English, Baldwin, & DuBois, 2018 ; Davis, Riske-Morris, & Diaz, 2007 ; DuBois et al., 2013 ).

These two influences on ethical behavior are helpful to keep in mind when thinking about your behavior. When people think about their ethical behavior, they think about their personal values and integrity and tend to overlook the influence of their environment. While “being a good person” and having the right intentions are essential to ethical behavior, the environment also has an influence. In addition, knowledge of standards for ethical research is important for ethical behavior, and graduate students new to research do not yet know everything they need to. They also have not fully refined their ethical decision-making skills for solving professional problems. We discuss strategies for ethical decision-making in the final section of this article ( McIntosh, Antes, & DuBois, 2020 ).

The research environment influences ethical behavior in a number of ways. For example, if a research group explicitly discusses high standards for research, people will be more likely to prioritize these ideals in their behavior ( Plemmons et al., 2020 ). A mentor who sets a good example is another important factor ( Anderson et al., 2007 ). Research labs must also provide individuals with adequate training, supervision and feedback, opportunities to discuss data, and the psychological safety to feel comfortable communicating about problems, including mistakes ( Antes, Kuykendall, & DuBois, 2019a , 2019b ). On the other hand, unfair research environments, inadequate supervision, poor communication, and severe stress and anxiety may undermine ethical decision-making and behavior; particularly when many of these factors exist together. Thus, (un)ethical behavior is a complex interplay of individual factors (e.g., personality, stress, decision-making skills) and the environment.

For graduate students, it is important to attend to what you are learning and how the environment around you might influence your behavior. You do not know what you do not know, and you necessarily rely on others to teach you responsible practices. So, it is important to be aware. Ultimately, you are accountable for your behavior. You cannot just say “I didn’t know.” Rather, just like you are curious about your scientific questions, maintain a curiosity about responsible behavior as a researcher. If you feel uncomfortable with something, pay attention to that feeling, speak to someone you trust, and seek out information about how to handle the situation. In what follows, we cover key tips for responsible behavior in the areas of reproducibility and authorship that we hope will help you as you begin.

HOW TO DO REPRODUCIBLE SCIENCE

The foremost responsibility of scientists is to ensure they conduct research in such a manner that the findings are trustworthy. Reproducibility is the ability to duplicate results ( Goodman, Fanelli, & Ioannidis, 2016 ). The scientific community has called for greater openness, transparency, and rigor as key remedies for lack of reproducibility ( Munafò et al., 2017 ). As a graduate student, essential to fostering reproducibility is the rigor of your approach to doing experiments and handling data. We discuss how to utilize research protocols, document experiments in a lab notebook, and handle data responsibly.

Utilize research protocols

1. learn and utilize the lab’s protocols.

Research protocols describe the step-by-step procedures for doing an experiment. They are critical for the quality and reproducibility of experiments. Lab members must learn and follow the lab’s protocols with the understanding that they may need to make adjustments based on the requirements of a specific experiment.

Also, it is important to distinguish between the experiment you are performing and analyzing the data from that experiment. For example, the experiment you want to perform might be to determine if loss of a gene blocks cell growth. Several protocols, each with pros and cons, will allow you to examine “cell growth.” Using the wrong experimental protocol can produce data that leads to muddled conclusions. In this example, the gene does block cell growth, but the experiment used to produce the data that you analyze to understand cell growth is wrong, thus giving a result that is a false negative.

When first joining a lab, it is essential to commit to learning the protocols necessary for your assigned research project. Researchers must ensure they are proficient in executing a protocol and can perform their experiments reliably. If you do not feel confident with a protocol, you should do practice runs if possible. Repetition is the best way to work through difficulties with protocols. Often it takes several attempts to work through the steps of a protocol before you will be comfortable performing it. Asking to watch another lab member perform the protocol is also helpful. Be sure to watch closely how steps are performed, as often there are minor steps taken that are not written down. Also, experienced lab members may do things as second nature and not think to explicitly mention them when working through the protocol. Ask questions of other lab members so that you can improve your knowledge and gain confidence with a protocol. It is better to ask a question than potentially ruin a valuable or hard-to-get sample.

Be cautious of differences in the standing protocols in the lab and how you actually perform the experiment. Even the most minor deviations can seriously impact the results and reproducibility of an experiment. As mentioned above, often there are minor things that are done that might not be listed in the protocol. Paying attention and asking questions are the best ways to learn, in addition to adding notes to the protocol if you find minor details are missing.

2. Develop your own protocols

Often you will find that a project requires a protocol that has not been performed in the lab. If performing a new experiment in the lab and no protocol exists, find a protocol and try it. Protocols can be obtained from many different sources. A great source is other labs on campus, as you can speak directly to the person who performs the experiment. There are many journal sources as well, such as Current Protocols, Nature Protocols, Nature Methods, and Cell STAR Methods . These methods journals provide the most detailed protocols for experiments often with troubleshooting tips. Scientific papers are the most common source of protocols. However, keep in mind that due to the common brevity of methods sections, they often omit crucial details or reference other papers that may not contain a complete description of the protocol.

3. Handle mistakes or problems promptly

At some point, everyone encounters problems with a protocol, or realizes they made a mistake. You should be prepared to handle this situation by being able to detail exactly how you performed the experiment. Did you skip a step? Shorten or lengthen a time point? Did you have to make a new buffer or borrow a labmate’s buffer? There are too many ways an experiment can go wrong to list here but being able to recount all the steps you performed in detail will help you work through the problem. Keep in mind that often the best way to understand how to perform an experiment is learning from when something goes wrong. This situation requires you to critically think through what was done and understand the steps taken. When everything works perfectly, it is easy to pay less attention to the details, which can lead to problems down the line.

It is up to you to be attentive and meticulous in the lab. Paying attention to the details may feel like a pain at first, or even seem overwhelming. Practice and repetition will help this focus on details become a natural part of your lab work. Ultimately, this skill will be essential to being a responsible scientist.

Document experiments in a lab notebook

1. recognize the importance of a lab notebook.

Maintaining detailed documentation in a lab notebook allows researchers to keep track of their experiments and generation of data. This detailed documentation helps you communicate about your research with others in the lab, and serves as a basis for preparing publications. It also provides a lasting record for the lab that exists beyond your time in the lab. After graduate students leave the lab, sometimes it is necessary to go back to the results of older experiments. A complete and detailed notebook is essential, or all of the time, effort, and resources are lost.

2. Learn the note-keeping practices in your lab

When you enter a new lab, it is important to understand how the lab keeps notebooks and the expectations for documentation. Being conscientious about documentation will make you a better scientist. In some labs, the PI might routinely examine your notebook, while in other labs you may be expected to maintain a notebook, but it may not be regularly viewed by others. It is tempting to become relaxed in documentation if you think your notebook may not be reviewed. Avoid this temptation; documentation of your ideas and process will improve your ability to think critically about research. Further, even if the PI or lab members do not physically view your notebook, you will need to communicate with them about your experiments. This documentation is necessary to communicate effectively about your work.

3. Organize your lab notebook

Different labs use different formats; some use electronic notebooks while others handwritten notebooks. The contents of a good notebook include the purpose of the experiment, the details of the experimental procedure, the data, and thoughts about the results. To effectively document your experiment, there are 5 critical questions that the information you record should be able to answer.

  • Why I am doing this experiment? (purpose)
  • What did I do to perform the experiment? (protocol)
  • What are the results of what I did? (data, graphs)
  • What do I think about the results?
  • What do I think are the next steps?

We also recommend a table of contents. It will make the information more useful to you and the lab in the future. The table of contents should list the title of the experiment, the date(s) it was performed, and the page numbers on which it is recorded. Also, make sure that you write clearly and provide a legend or explanation of any shorthand or non-standard abbreviation you use. Often labs will have a combination of written lab notebooks and electronic data. It is important to reference where electronic data are located that go with each experiment. The idea is to make it as easy as possible to understand what you did and where to find all the data (electronic and hard copy) that accompanies your experiment.

Keeping a lab notebook becomes easier with practice. It can be thought of almost like journaling about your experiment. Sometimes people think of it as just a place to paste their protocol and a graph or data. We strongly encourage you to include your thoughts about why you made the decisions you made when conducting the experiment and to document your thoughts about next steps.

4. Commit to doing it the right way

A common reason to become lax in documentation is feeling rushed for time. Although documentation takes time, it saves time in the long-run and fosters good science. Without good notes, you will waste time trying to recall precisely what you did, reproduce your findings, and remember what you thought would be important next steps. The lab notebook helps you think about your research critically and keep your thoughts together. It can also save you time later when writing up results for publication. Further, well-documented data will help you draft a cogent and rigorous dissertation.

Handle data responsibly

1. keep all data.

Data are the product of research. Data include raw data, processed data, analyzed data, figures, and tables. Many data today are electronic, but not all. Generating data requires a lot of time and resources and researchers must treat data with care. The first essential tip is to keep all data. Do not discard data just because the experiment did not turn out as expected. A lot of experiments do not turn out to yield publishable data, but the results are still important for informing next steps.

Always keep the original, raw data. That is, as you process and analyze data, always maintain an unprocessed version of the original data.

Universities and funding agencies have data retention policies. These policies specify the number of years beyond a grant that data must be kept. Some policies also indicate researchers need to retain original data that served as the basis for a publication for a certain number of years. Therefore, your data will be important well beyond your time in graduate school. Most labs require you to keep samples for reanalysis until a paper is published, then the analyzed data are enough. If you leave a lab before a paper is accepted for publication, you are responsible for ensuring your data and original samples are well documented for others to find and use.

2. Document all data

In addition to keeping all data, data must be well-organized and documented. This means that no matter the way you keep your data (e.g., electronic or in written lab notebooks), there is a clear guide—in your lab notebook, a binder, or on a lab hard drive—to finding the data for a particular experiment. For example, it must be clear which data produced a particular graph. Version control of data is also critical. Your documentation should include “metadata” (data about your data) that tracks versions of the data. For example, as you edit data for a table, you should save separate versions of the tables, name the files sequentially, and note the changes that were made to each version.

3. Backup your data

You should backup electronic data regularly. Ideally, your lab has a shared server or cloud storage to backup data. If you are supposed to put your data there, make sure you do it! When you leave the lab, it must be possible to find your data.

4. Perform data analysis honestly and competently

Inappropriate use of statistics is a major concern in the scientific community, as the results and conclusions will be misleading if done incorrectly ( DeMets, 1999 ). Some practices are clearly an abuse of statistics, while other inappropriate practices stem from lack of knowledge. For example, a practice called “p-hacking” describes when researchers “collect or select data or statistical analyses until nonsignificant results become significant” ( Head, Holman, Lanfear, Kahn, & Jennions, 2015 ). In addition to avoiding such misbehavior, it is essential to be proficient with statistics to ensure you do statistical procedures appropriately. Learning statistical procedures and analyzing data takes many years of practice, and your statistics courses may only cover the basics. You will need to know when to consult others for help. In addition to consulting members in your lab or your PI, your university may have statistical experts who can provide consultations.

5. Master pressure to obtain favored results

When you conduct an experiment, the results are the results. As a beginning researcher, it is important to be prepared to manage the frustration of experiments not turning out as expected. It is also important to manage the real or perceived pressure to produce favored results. Investigators can become wedded to a hypothesis, and they can have a difficult time accepting the results. Sometimes you may feel this pressure coming from yourself; for example, if you want to please your PI, or if you want to get results for a certain publication. It is important to always follow the data no matter where it leads.

If you do feel pressure, this situation can be uncomfortable and stressful. If you have been meticulous and followed the above recommendations, this can be one great safeguard. You will be better able to confidently communicate your results to the PI because of your detailed documentation, and you will be more confident in your procedures if the possibility of error is suggested. Typically, with enough evidence that the unexpected results are real, the PI will concede. We recommend seeking the support of friends or colleagues to vent and cope with stress. In the rare case that the PI does not relent, you could turn to an advisor outside the lab if you need advice about how to proceed. They can help you look at the data objectively and also help you think about the interpersonal aspects of navigating this situation.

6. Communicate about your data in the lab

A critical element of reproducible research is communication in the lab. Ideally, there are weekly or bi-weekly meetings to discuss data. You need to develop your communication skills for writing and speaking about data. Often you and your labmates will discuss experimental issues and results informally during the course of daily work. This is an excellent way to hone critical thinking and communication skills about data.

Scenario 1 – The Protocol is Not Working

At the beginning of a rotation during their first year, a graduate student is handed a lab notebook and a pen and is told to keep track of their work. There does not appear to be a specific format to follow. There are standard lab protocols that everyone follows, but minor tweaks to the protocols do not seem to be tracked from experiment to experiment in the standard lab protocol nor in other lab notebooks. After two weeks of trying to follow one of the standard lab protocols, the student still cannot get the experiment to work. The student has included the appropriate positive and negative controls which are failing, making the experiment uninterpretable. After asking others in the lab for help, the graduate student learns that no one currently in the lab has performed this particular experiment. The former lab member who had performed the experiment only lists the standard protocol in their lab notebook.

How should the graduate student start to solve the problem?

Speaking to the PI would be the next logical step. As a first-year student in a lab rotation, the PI should expect this type of situation and provide additional troubleshooting guidance. It is possible that the PI may want to see how the new graduate student thinks critically and handles adversity in the lab. Rather than giving an answer, the PI might ask the student to work through the problem. The PI should give guidance, but it may not be an immediate fix for the problem. If the PI’s suggestions fail to correct the problem, asking a labmate or the PI for the contact information of the former lab member who most recently performed the experiment would be a reasonable next step. The graduate student’s conversations with the PI and labmates in this situation will help them learn a lot about how the people in the lab interact.

Most of the answers for these types of problems will require you as a graduate student to take the initiative to answer. They will require your effort and ingenuity to talk to other lab members, other labs at the university, and even scour the literature for alternatives. While labs have standard protocols, there are multiple ways to do many experiments, and working out an alternative will teach you more than when everything works. Having to troubleshoot problems will result in better standard protocols in the lab and better science.

HOW TO BE A RESPONSIBLE AUTHOR

Researchers communicate their findings via peer-reviewed publications, and publications are important for advancing in a research career. Many graduate students will first author or co-author publications in graduate school. For good advice on how to write a research manuscript, consult the Current Protocols article “How to write a research manuscript” ( Frank, 2018 ). We focus on the issues of assigning authors and reporting your findings responsibly. First, we describe some important basics: journal impact factors, predatory journals, and peer review.

What are journal impact factors?

It is helpful to understand journal impact factors. There is criticism about an overemphasis on impact factors for evaluating the quality or importance of researchers’ work ( DePellegrin & Johnston, 2015 ), but they remain common for this purpose. Journal impact factors reflect the average number of times articles in a journal were cited in the last two years. Higher impact factors place journals at a higher rank. Approximately 2% of journals have an impact factor of 10 or higher. For example, Cell, Science, and Nature have impact factors of approximately 39, 42, and 43, respectively. Journals can be great journals but have lower impact factors; often this is because they focus on a smaller specialty field. For example, Journal of Immunology and Oncogene are respected journals, but their impact factors are about 4 and 7, respectively.

Research trainees often want to publish in journals with the highest possible impact factor because they expect this to be viewed favorably when applying to future positions. We encourage you to bear in mind that many different journals publish excellent science and focus on publishing where your work will reach the desired audience. Also, keep in mind that while a high impact factor can direct you to respectable, high-impact science, it does not guarantee that the science in the paper is good or even correct. You must critically evaluate all papers you read no matter the impact factor.

What are predatory journals?

Predatory journals have flourished over the past few years as publishing science has moved online. An international panel defined predatory journals as follows ( Grudniewicz et al., 2019 ):

Predatory journals and publishers are entities that prioritize self-interest at the expense of scholarship and are characterized by false or misleading information, deviation from best editorial and publication practices, a lack of transparency, and/or the use of aggressive and indiscriminate solicitation practices. (p. 211)

Often young researchers receive emails soliciting them to submit their work to a journal. There are typically small fees (around $99 US) requested but these fees will be much lower than open access fees of reputable journals (often around $2000 US). A warning sign of a predatory journal is outlandish promises, such as 24-hour peer review or immediate publication. You can find a list of predatory journals created by a postdoc in Europe at BeallsList.net ( “Beall’s List of Potential Predatory Journals and Publishers,” 2020 ).

What is peer review?

Peer reviewers are other scientists who have the expertise to evaluate a manuscript. Typically 2 or 3 reviewers evaluate a manuscript. First, an editor performs an initial screen of the manuscript to ensure its appropriateness for the journal and that it meets basic quality standards. At this stage, an editor can decide to reject the manuscript and not send it to review. Not sending a paper for peer review is common in the highest impact journals that receive more submissions per year than can be reviewed and published. For average-impact journals and specialty journals, typically your paper will be sent for peer review.

In general, peer review focuses on three aspects of a manuscript: research design and methods, validity of the data and conclusions, and significance. Peer reviewers assess the merit and rigor of the research design and methodology, and they evaluate the overall validity of the results, interpretations, and conclusions. Essentially, reviewers want to ensure that the data support the claims. Additionally, reviewers evaluate the overall significance, or contribution, of the findings, which involves the novelty of the research and the likelihood that the findings will advance the field. Significance standards vary between journals. Some journals are open to publishing findings that are incremental advancements in a field, while others want to publish only what they deem as major advancements. This feature can distinguish the highest impact journals which seek the most significant advancements and other journals that tend to consider a broader range of work as long as it is scientifically sound. It is important to keep in mind that determining at the stage of review and publication whether a paper is “high impact” is quite subjective. In reality, this can only really be determined in retrospect.

The key ethical issues in peer review are fairness, objectivity, and confidentiality ( Shamoo & Resnik, 2015 ). Peer reviewers are to evaluate the manuscript on its merits and not based on biases related to the authors or the science itself. If reviewers have a conflict of interest, this should be disclosed to the editor. Confidentiality of peer review means that the reviewers should keep private the information; they should not share the information with others or use it to their benefit. Reviewers can ultimately recommend that the manuscript is rejected, revised, and resubmitted (major or minor revisions), or accepted. The editor evaluates the reviewers’ feedback and makes a judgment about rejecting, accepting, or requesting a revision. Sometimes PIs will ask experienced graduate students to assist with peer reviewing a manuscript. This is a good learning opportunity. The PI should disclose to the editor that they included a trainee in preparing the review.

Assign authorship fairly

Authorship gives credit to the people who contributed to the research. This includes thinking of the ideas, designing and performing experiments, interpreting the results, and writing the paper. Two key questions regarding authorship include: 1 - Who will be an author? 2 - What will be the order in which authors are listed? These seem simple on the surface but can get quite complex.

1. Know authorship guidelines

Authorship guidelines published by journals, professional societies, and universities communicate key principles of authorship and standards for earning authorship. The core ethical principle of assigning authorship is fairness in who receives credit for the work. The people who contributed to the work should get credit for it. This seems simply enough, but determining authorship can (and often does) create conflict.

Many universities have authorship guidelines, and you should know the policies at your university. The International Committee of Medical Journal Editors (ICMJE) provides four criteria for determining who should be an author ( International Committee of Medical Journal Editors, 2020 ). These criteria indicate that an author should do all of the following: 1) make “substantial contributions” to the development of the idea or research design, or to acquiring, analyzing, or interpreting the data, 2) write the manuscript or revise it a substantive way, 3) give approval of the final manuscript (i.e., before it is submitted for review, and after it is revised, if necessary), and 4) agree to be responsible for any questions about the accuracy or integrity of the research.

Several types of authorship violate these guidelines and should be avoided. Guest authorship is when respected researchers are added out of appreciation, or to have the manuscript be perceived more favorably to get it published or increase its impact. Gift authorship is giving authorship to reward an individual, or as a favor. Ghost authorship is when someone made significant contributions to the paper but is not listed as an author. To increase transparency, some journals require authors to indicate how each individual contributed to the research and manuscript.

2. Apply the guidelines

Conflicts often arise from disagreements about how much people contributed to the research and whether those contributions merit authorship. The best approach is an open, honest, and ongoing discussion about authorship, which we discuss in #3 below. To have effective, informed conversations about authorship, you must understand how to apply the guidelines to your specific situation. The following is a simple rule of thumb that indicates there are three components of authorship. We do not list giving final approval of the manuscript and agreeing to be accountable, but we do consider these essentials of authorship.

  • Thinking – this means contributing to the ideas leading to the hypothesis of the work, designing experiments to address the hypothesis, and/or analyzing the results in the larger context of the literature in the field.
  • Doing – this means performing and analyzing the experiments.
  • Writing – this means editing a draft, or writing the entire paper. The first author often writes the entire first draft.

In our experience, a first author would typically do all three. They also usually coordinate the writing and editing process. Co-authors are typically very involved in at least two of the three, and are somewhat involved in the other. The PI, who oversees and contributes to all three, is often the last, or “senior author.” The “senior author” is typically the “corresponding author”—the person listed as the individual to contact about the paper. The other co-authors are listed between the first and senior author either alphabetically, or more commonly, in order from the largest to smallest contribution.

Problems in assigning authorship typically arise due to people’s interpretations of #1 (thinking) and #2 (doing)—what and how much each individual contributed to a project’s design, execution, and analysis. Different fields or PIs may have their own slight variations on these guidelines. The potential conflicts associated with assigning authorship lead to the most common recommendation for responsibly assigning authorship: discuss authorship expectations early and revisit them during the project.

3. Discuss authorship with your collaborators

Publications are important for career advancement, so you can see why people might be worried about fairness in assigning authorship. If the problem arises from a lack of a shared understanding about contributions to the research, the only way to clarify this is an open discussion. This discussion should ideally take place very early at the beginning of a project, and should be ongoing. Hopefully you work in a laboratory that makes these discussions a natural part of the research process; this makes it much easier to understand the expectations upfront.

We encourage you to speak up about your interest in making a contribution that would merit authorship, especially if you want to earn first authorship. Sometimes norms about authoring papers in a lab make it clear you are expected to first and co-author publications, but it is best to communicate your interest in earning authorship. If the project is not yours, but you wish to collaborate, you can inquire what you may be able to contribute that would merit authorship.

If it is not a norm in your lab to discuss authorship throughout the life of projects, then as a graduate student you may feel reluctant to speak up. You could initiate a conversation with a more senior graduate student, a postdoc, or your PI, depending on the dynamics in the group. You could ask generally about how the lab approaches assignment of authorship, but discussing a specific project and paper may be best. It may feel awkward to ask, but asking early is less uncomfortable than waiting until the end of the project. If the group is already drafting a manuscript and you are told that your contribution is insufficient for authorship, this situation is much more discouraging than if you had asked earlier about what is expected to earn authorship.

How to report findings responsibly

The most significant responsibility of authors is to present their research accurately and honestly. Deliberately presenting misleading information is clearly unethical, but there are significant judgment calls about how to present your research findings. For example, an author can mislead by overstating the conclusions given what the data support.

1. Commit to presenting your findings honestly

Any good scientific manuscript writer will tell you that you need to “tell a good story.” This means that your paper is organized and framed to draw the reader into the research and convince them of the importance of the findings. But, this story must be sound and justified by the data. Other authors are presenting their findings in the best, most “publishable” light, so it is a balancing act to be persuasive but also responsible in presenting your findings in a trustworthy manner. To present your findings honestly, you must be conscious of how you interpret your data and present your conclusions so that they are accurate and not overstated.

One misbehavior known as “HARKing,” Hypothesis After the Results are Known, occurs when hypotheses are created after seeing the results of an experiment, but they are presented as if they were defined prior to collecting the data ( Munafò et al., 2017 ). This practice should be avoided. HARKing may be driven, in part, by a concern in scientific publishing known as publication bias. This bias is a preference that reviewers, editors, and researchers have for papers describing positive findings instead of negative findings ( Carroll, Toumpakari, Johnson, & Betts, 2017 ). This preference can lead to manipulating one’s practices, such as by HARKing, so that positive findings can be reported.

It is important to note that in addition to avoiding misbehaviors such as HARKing, all researchers are susceptible to a number of more subtle traps in judgment. Even the most well-intentioned researcher may jump to conclusions, discount alternative explanations, or accept results that seem correct without further scrutiny ( Nuzzo, 2015 ). Therefore, researchers must not only commit to presenting their findings honestly but consider how they can counteract such traps by slowing down and increasing their skepticism towards their findings.

2. Provide an appropriate amount of detail

Providing enough detail in a manuscript can be a challenge with the word limits imposed by most journals. Therefore, you will need to determine what details to include and which to exclude, or potentially include in the supplemental materials. Methods sections can be long and are often the first to be shortened, but complete methods are important for others to evaluate the research and to repeat the methods in other studies. Even more significant is making decisions about what experimental data to include and potentially exclude from the manuscript. Researchers must determine what data is required to create a complete scientific story that supports the central hypothesis of the paper. On the other hand, it is not necessary or helpful to include so much data in the manuscript, or in supplemental material, that the central point of the paper is difficult to discern. It is a tricky balance.

3. Follow proper citation practices

Of course, responsible authorship requires avoiding plagiarism. Many researchers think that plagiarism is not a concern for them because they assume it is always done intentionally by “copying and pasting” someone else’s words and claiming them as your own. Sometimes poor writing practices, such as taking notes from references without distinguishing between direct quotes and paraphrased material, can lead to including material that is not quoted properly. More broadly, proper citation practices include accurately and completely referencing prior studies to provide appropriate context for your manuscript.

4. Attend to the other important details

The journal will require several pieces of additional information, such as disclosure of sources of funding and potential conflicts of interest. Typically, graduate students do not have relationships that constitute conflicts of interest, but a PI who is a co-author may. In submitting a manuscript, also make sure to acknowledge individuals not listed as authors but who contributed to the work.

5. Share data and promote transparency

Data sharing is a key facet of promoting transparency in science ( Nosek et al., 2015 ). It will be important to know the expectations of the journals in which you wish to publish. Many top journals now require data sharing; for example, sharing your data files in an online repository so others have access to the data for secondary use. Funding agencies like NIH also increasingly require data sharing. To further foster transparency and public trust in research, researchers must deposit their final peer-reviewed manuscripts that report on research funded by NIH to PubMed Central. PubMed makes biomedical and life science research publicly accessible in a free, online database.

Scenario 2 – Authors In Conflict

To prepare a manuscript for publication, a postdoc’s data is added to a graduate student’s thesis project. After working together to combine the data and write the paper, the postdoc requests co-first authorship on the paper. The graduate student balks at this request on the basis that it is their thesis project. In a weekly meeting with the lab’s PI to discuss the status of the paper, the graduate student states that they should divide the data between the authors as a way to prove that the graduate student should be the sole first author. The PI agrees to this attempt to quantify how much data each person contributed to the manuscript. All parties agree the writing and thinking were equally shared between them. After this assessment, the graduate student sees that the postdoc actually contributed more than half of the data presented in the paper. The graduate student and a second graduate student contributed the remaining data; this means the graduate student contributed much less than half of the data in the paper. However, the graduate student is still adamant that they must be the sole first author of the paper because it is their thesis project.

Is the graduate student correct in insisting that it is their project, so they are entitled to be the sole first author?

Co-first authorship became popular about 10 years ago as a way to acknowledge shared contributions to a paper in which authors worked together and contributed equally. If the postdoc contributed half of the data and worked with the graduate student to combine their interpretations and write the first draft of the paper, then the postdoc did make a substantial contribution. If the graduate student wrote much of the first draft of the paper, contributed significantly to the second half of data, and played a major role in the thesis concept and design, this is also a major contribution. We summarized authorship requirements as contributing to thinking, doing, and writing, and we noted that a first author usually contributes to all of these. The graduate student has met all 3 elements to claim first authorship. However, it appears that the postdoc has also met these 3 requirements. Thus, it is at least reasonable for the postdoc to ask about co-first authorship.

The best way to move forward is to discuss their perspectives openly. Both the graduate student and postdoc want first authorship on papers to advance their careers. The postdoc feels they contributed more to the overall concept and design than the graduate student is recognizing, and the postdoc did contribute half of the data. This is likely frustrating and upsetting for the postdoc. On the other hand, perhaps the postdoc is forgetting how much a thesis becomes like “your baby,” so to speak. The work is the graduate student’s thesis, so it is easy to see why the graduate student would feel a sense of ownership of it. Given this fact, it may be hard for the graduate student to accept the idea that they would share first-author recognition for the work. Yet, the graduate student should consider that the manuscript would not be possible without the postdoc’s contribution. Further, if the postdoc was truly being unreasonable, then the postdoc could make the case for sole first authorship based on contributing the most data to the paper, in addition to contributing ideas and writing the paper. The graduate student should consider that the postdoc may be suggesting co-first authorship in good faith.

As with any interpersonal conflict, clear communication is key. While it might be temporarily uncomfortable to voice their views and address this disagreement, it is critical to avoiding permanent damage to their working relationship. The pair should consider each other’s perspectives and potential alternatives. For example, if the graduate student is first author and the postdoc second, at a minimum they could include an author note in the manuscript that describes the contribution of each author. This would make it clear the scope of the postdoc’s contribution, if they decided not to go with co-first authorship. Also, the graduate student should consider their assumptions about co-first authorship. Maybe they assume it makes it appear they contributed less, but instead, perhaps co-first authorship highlights their collaborative approach to science. Collaboration is a desirable quality many (although arguably not all) research organizations look for when they are hiring.

They will also need to speak with others for advice. The pair should definitely speak with the PI who could provide input about how these cases have been handled in the past. Ultimately, if they cannot reach an agreement, the PI, who is likely to be the last or “senior” author, may make the final decision. They should also speak to the other graduate student who is an author.

If either individual is upset with the situation, they will want to discuss it when they have had time to cool down. This might mean taking a day before discussing, or speaking with someone outside of the lab for support. Ideally, all authors on this paper would have initiated this conversation earlier, and the standards in the lab for first authorship would be discussed routinely. Clear communication may have avoided the conflict.

HOW TO USE DECISION-MAKING STRATEGIES TO NAVIGATE CHALLENGES

We have provided advice on some specific challenges you might encounter in research. This final section covers our overarching recommendation that you adopt a set of ethical decision-making strategies. These strategies help researchers address challenges by helping them think through a problem and possible alternatives ( McIntosh et al., 2020 ). The strategies encourage you to gather information, examine possible outcomes, consider your assumptions, and address emotional reactions before acting. They are especially helpful when you are uncertain how to proceed, face a new problem, or when the consequences of a decision could negatively impact you or others. The strategies also help people be honest with themselves, such as when they are discounting important factors or have competing goals, by encouraging them to identify outside perspectives and test their motivations. You can remember the strategies using the acronym SMART .

1. S eek Help

Obtain input from others who can be objective and that you trust. They can assist you with assessing the situation, predicting possible outcomes, and identifying potential options. They can also provide you with support. Individuals to consult may be peers, other faculty, or people in your personal life. It is important that you trust the people you talk with, but it is also good when they challenge your perspective, or encourage you to think in a new way about a problem. Keep in mind that people such as program directors and university ombudsmen are often available for confidential, objective advice.

2. M anage Emotions

Consider your emotional reaction to the situation and how it might influence your assessment of the situation, and your potential decisions and actions. In particular, identify negative emotions, like frustration, anxiety, fear, and anger, as they particularly tend to diminish decision-making and the quality of interactions with others. Take time to address these emotions before acting, for example, by exercising, listening to music, or simply taking a day before responding.

3. A nticipate Consequences

Think about how the situation could turn out. This includes for you, for the research team, and anyone else involved. Consider the short, middle-term, and longer-term impacts of the problem and your potential approach to addressing the situation. Ideally, it is possible to identify win-win outcomes. Often, however, in tough professional situations, you may need to select the best option from among several that are not ideal.

4. R ecognize Rules and Context

Determine if any ethical principles, professional policies, or rules apply that might help guide your choices. For instance, if the problem involves an authorship dispute, consider the authorship guidelines that apply. Recognizing the context means considering the situational factors that could impact your options and how you proceed. For example, factors such as the reality that ultimately the PI may have the final decision about authorship.

5. T est Assumptions and Motives

Examine your beliefs about the situation and whether any of your thoughts may not be justified. This includes critically examining the personal motivations and goals that are driving your interpretation of the problem and thoughts about how to resolve it.

These strategies do not have to be engaged in order, and they are interrelated. For example, seeking help can help you manage emotions, test assumptions, and anticipate consequences. Go back to the scenarios and our advice throughout this article, and you will see many of our suggestions align with these strategies. Practice applying SMART strategies when you encounter a problem and they will become more natural.

Learning practices for responsible research will be the foundation for your success in graduate school and your career. We encourage you to be reflective and intentional as you learn and hope that our advice helps you along the way.

ACKNOWLEDGEMENTS

This work was supported by the National Human Genome Research Institute (Antes, K01HG008990) and the National Center for Advancing Translational Sciences (UL1 TR002345).

LITERATURE CITED

  • Anderson MS, Horn AS, Risbey KR, Ronning EA, De Vries R, & Martinson BC (2007). What Do Mentoring and Training in the Responsible Conduct of Research Have To Do with Scientists’ Misbehavior? Findings from a National Survey of NIH-Funded Scientists . Academic Medicine , 82 ( 9 ), 853–860. doi: 10.1097/ACM.0b013e31812f764c [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, Brown RP, Murphy ST, Waples EP, Mumford MD, Connelly S, & Devenport LD (2007). Personality and Ethical Decision-Making in Research: The Role of Perceptions of Self and Others . Journal of Empirical Research on Human Research Ethics , 2 ( 4 ), 15–34. doi: 10.1525/jer.2007.2.4.15 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, English T, Baldwin KA, & DuBois JM (2018). The Role of Culture and Acculturation in Researchers’ Perceptions of Rules in Science . Science and Engineering Ethics , 24 ( 2 ), 361–391. doi: 10.1007/s11948-017-9876-4 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, Kuykendall A, & DuBois JM (2019a). The Lab Management Practices of “Research Exemplars” that Foster Research Rigor and Regulatory Compliance: A Qualitative Study of Successful Principal Investigators . PloS One , 14 ( 4 ), e0214595. doi: 10.1371/journal.pone.0214595 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, Kuykendall A, & DuBois JM (2019b). Leading for Research Excellence and Integrity: A Qualitative Investigation of the Relationship-Building Practices of Exemplary Principal Investigators . Accountability in Research , 26 ( 3 ), 198–226. doi: 10.1080/08989621.2019.1611429 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Antes AL, & Maggi LB Jr. (2021). How to Navigate Trainee-Mentor Relationships and Interpersonal Dynamics in the Lab . Current Protocols Essential Laboratory Techniques. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Asplund M, & Welle CG (2018). Advancing Science: How Bias Holds Us Back . Neuron , 99 ( 4 ), 635–639. doi: 10.1016/j.neuron.2018.07.045 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Baker M (2016). Is There a Reproducibility Crisis? Nature , 533 , 452–454. doi: 10.1038/533452a [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barba LA (2016). The Hard Road to Reproducibility . Science , 354 ( 6308 ), 142. doi: 10.1126/science.354.6308.142 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beall’s List of Potential Predatory Journals and Publishers . (2020). Retrieved from https://beallslist.net/#update [ Google Scholar ]
  • Carroll HA, Toumpakari Z, Johnson L, & Betts JA (2017). The Perceived Feasibility of Methods to Reduce Publication Bias . PloS One , 12 ( 10 ), e0186472–e0186472. doi: 10.1371/journal.pone.0186472 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chappell B (2019). Duke Whistleblower Gets More Than $33 Million in Research Fraud Settlement . NPR. Retrieved from https://www.npr.org/2019/03/25/706604033/duke-whistleblower-gets-more-than-33-million-in-research-fraud-settlement [ Google Scholar ]
  • Davis MS, Riske-Morris M, & Diaz SR (2007). Causal Factors Implicated in Research Misconduct: Evidence from ORI Case Files . Science and Engineering Ethics , 13 ( 4 ), 395–414. doi: 10.1007/s11948-007-9045-2 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • DeMets DL (1999). Statistics and Ethics in Medical Research . Science and Engineering Ethics , 5 ( 1 ), 97–117. doi: 10.1007/s11948-999-0059-9 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Department of Health and Human Services. (2005). 42 CFR Parts 50 and 93 Public Health Service Policies on Research Misconduct; Final Rule. Retrieved from https://ori.hhs.gov/sites/default/files/42_cfr_parts_50_and_93_2005.pdf [ Google Scholar ]
  • DePellegrin TA, & Johnston M (2015). An Arbitrary Line in the Sand: Rising Scientists Confront the Impact Factor . Genetics , 201 ( 3 ), 811–813. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • DuBois JM, Anderson EE, Chibnall J, Carroll K, Gibb T, Ogbuka C, & Rubbelke T (2013). Understanding Research Misconduct: A Comparative Analysis of 120 Cases of Professional Wrongdoing . Account Res , 20 ( 5–6 ), 320–338. doi: 10.1080/08989621.2013.822248 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • DuBois JM, & Antes AL (2018). Five Dimensions of Research Ethics: A Stakeholder Framework for Creating a Climate of Research Integrity . Academic Medicine , 93 ( 4 ), 550–555. doi: 10.1097/ACM.0000000000001966 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Else H (2018). Does Science have a Bullying Problem? Nature , 563 , 616–618. doi: 10.1038/d41586-018-07532-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Emanuel EJ, Wendler D, & Grady C (2000). What Makes Clinical Research Ethical ? Journal of the American Medical Association , 283 ( 20 ), 2701–2711. doi:jsc90374 [pii] [ PubMed ] [ Google Scholar ]
  • Evans TM, Bira L, Gastelum JB, Weiss LT, & Vanderford NL (2018). Evidence for a Mental Health Crisis in Graduate Education . Nature Biotechnology , 36 ( 3 ), 282–284. doi: 10.1038/nbt.4089 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Frank DJ (2018). How to Write a Research Manuscript . Current Protocols Essential Laboratory Techniques , 16 ( 1 ), e20. doi: 10.1002/cpet.20 [ CrossRef ] [ Google Scholar ]
  • Goodman SN, Fanelli D, & Ioannidis JPA (2016). What Does Research Reproducibility Mean? Science Translational Medicine , 8 ( 341 ), 341ps312. doi: 10.1126/scitranslmed.aaf5027 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grudniewicz A, Moher D, Cobey KD, Bryson GL, Cukier S, Allen K, … Lalu MM (2019). Predatory journals: no definition, no defence . Nature , 576 ( 7786 ), 210–212. doi: 10.1038/d41586-019-03759-y [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Head ML, Holman L, Lanfear R, Kahn AT, & Jennions MD (2015). The Extent and Consequences of P-Hacking in Science . PLoS Biology , 13 ( 3 ), e1002106. doi: 10.1371/journal.pbio.1002106 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hofstra B, Kulkarni VV, Munoz-Najar Galvez S, He B, Jurafsky D, & McFarland DA (2020). The Diversity–Innovation Paradox in Science . Proceedings of the National Academy of Sciences , 117 ( 17 ), 9284. doi: 10.1073/pnas.1915378117 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • International Committee of Medical Journal Editors. (2020). Defining the Role of Authors and Contributors . Retrieved from http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
  • Keith-Spiegel P, Sieber J, & Koocher GP (2010). Responding to Research Wrongdoing: A User-Friendly Guide . Retrieved from http://users.neo.registeredsite.com/1/4/0/20883041/assets/RRW_11-10.pdf
  • McIntosh T, Antes AL, & DuBois JM (2020). Navigating Complex, Ethical Problems in Professional Life: A Guide to Teaching SMART Strategies for Decision-Making . Journal of Academic Ethics . doi: 10.1007/s10805-020-09369-y [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Meyers LC, Brown AM, Moneta-Koehler L, & Chalkley R (2018). Survey of Checkpoints along the Pathway to Diverse Biomedical Research Faculty . PloS One , 13 ( 1 ), e0190606–e0190606. doi: 10.1371/journal.pone.0190606 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Munafò MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie du Sert N, … Ioannidis JPA (2017). A manifesto for reproducible science . Nature Human Behaviour , 1 ( 1 ), 0021. doi: 10.1038/s41562-016-0021 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • National Academies of Science. (2009). On Being a Scientist: A Guide to Responsible Conduct in Research . Washington DC: National Academics Press. [ PubMed ] [ Google Scholar ]
  • National Academies of Sciences Engineering and Medicine. (2017). Fostering Integrity in Research . Washington, DC: The National Academies Press [ PubMed ] [ Google Scholar ]
  • National Academies of Sciences Engineering and Medicine. (2018a). An American Crisis: The Growing Absence of Black Men in Medicine and Science: Proceedings of a Joint Workshop . Washington, DC: The National Academies Press. [ PubMed ] [ Google Scholar ]
  • National Academies of Sciences Engineering and Medicine. (2018b). Sexual harassment of women: climate, culture, and consequences in academic sciences, engineering, and medicine : National Academies Press. [ PubMed ] [ Google Scholar ]
  • National Institutes of Health. (2009). Update on the Requirement for Instruction in the Responsible Conduct of Research . NOT-OD-10-019 . Retrieved from https://grants.nih.gov/grants/guide/notice-files/NOT-OD-10-019.html
  • National Science Foundation. (2017). Important Notice No. 140 Training in Responsible Conduct of Research – A Reminder of the NSF Requirement . Retrieved from https://www.nsf.gov/pubs/issuances/in140.jsp
  • No Place for Bullies in Science. (2018). Nature , 559 ( 7713 ), 151. doi: 10.1038/d41586-018-05683-z [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Norris D, Dirnagl U, Zigmond MJ, Thompson-Peer K, & Chow TT (2018). Health Tips for Research Groups . Nature , 557 , 302–304. doi: 10.1038/d41586-018-05146-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, … Yarkoni T (2015). Scientific Standards . Promoting an Open Research Culture. Science , 348 ( 6242 ), 1422–1425. doi: 10.1126/science.aab2374 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nuzzo R (2015). How Scientists Fool Themselves - and How They Can Stop . Nature , 526 , 182–185. [ PubMed ] [ Google Scholar ]
  • O’Connor A (2018). More Evidence that Nutrition Studies Don’t Always Add Up . The New York Times. Retrieved from https://www.nytimes.com/2018/09/29/sunday-review/cornell-food-scientist-wansink-misconduct.html [ Google Scholar ]
  • Park A (2012). Great Science Frauds . Time. Retrieved from https://healthland.time.com/2012/01/13/great-science-frauds/slide/the-baltimore-case/ [ Google Scholar ]
  • Plemmons DK, Baranski EN, Harp K, Lo DD, Soderberg CK, Errington TM, … Esterling KM (2020). A Randomized Trial of a Lab-embedded Discourse Intervention to Improve Research Ethics . Proceedings of the National Academy of Sciences , 117 ( 3 ), 1389. doi: 10.1073/pnas.1917848117 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Research Institutions Must Put the Health of Labs First. (2018). Nature , 557 ( 7705 ), 279–280. doi: 10.1038/d41586-018-05159-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Research Integrity is Much More Than Misconduct . (2019). ( 570 ). doi: 10.1038/d41586-019-01727-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Resnik DB (2011). Scientific Research and the Public Trust . Science and Engineering Ethics , 17 ( 3 ), 399–409. doi: 10.1007/s11948-010-9210-x [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Roper RL (2019). Does Gender Bias Still Affect Women in Science? Microbiology and Molecular Biology Reviews , 83 ( 3 ), e00018–00019. doi: 10.1128/MMBR.00018-19 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shamoo AE, & Resnik DB (2015). Responsible Conduct of Research (3rd ed.). New York: Oxford University Press. [ Google Scholar ]
  • Steneck NH (2007). ORI Introduction to the Responsible Conduct of Research (Updated ed.). Washington, D.C.: U.S. Government Printing Office. [ Google Scholar ]
  • Winchester C (2018). Give Every Paper a Read for Reproducibility . Nature , 557 , 281. doi: 10.1038/d41586-018-05140-x [ PubMed ] [ CrossRef ] [ Google Scholar ]

Labmonk

How to Plan and Conduct a Research Project: 12 Simple Steps

Let’s have a brief and clear discussion on what we should do for achieving success in our research project.

Well! For planning and conduction we have to go through following steps.

1. Topic selection

Many of us have a clear research topic of mind but some are also there who come up with various ideas. When we are in pressure, we often get panicked and anxious, therefore we should select topic well before time by following ways.

2. Discussing with others: We should discuss with others (e.g., friends, lab mates, seniors, teachers and colleagues) about what they are mostly considering, what is sparking interest in us and whatever question arises we should freely discuss with others as their suggestions and comments will help us in refining our focus.

3. Having a look on other writings or previous people research topics:  Books and journals are major sources of ideas. We can spend some time in library and get some idea on title of other research paper of recent years, or we can go through previous people research projects. Similar studies have also been published in journals. Those articles we have to collect and plan how to make a difference.

Now-a-days many things are available online from internet. Websites like  Google ,  PubMed ,  Scopus ,  Science Direct  and others are some of the best learning sources and provides latest information of research. We can search many related topics and finalize a plan.

4. Considering our own interest:  Final and the vital point is considering our own interest like is giving us more interest. We can focus on that to find out whether that is covered in the syllabus. We should remain extra critical while choosing a topic so that we can find out which thing needs some extra studies. While choosing a topic certain points we should keep in mind like a research study can duplicate of already existing study in a completely different manner, extension of existing study, exploring the unexplored part, reviewing the knowledge in s particular field, application of theoretical idea to a real world problem.

5. Developing a research question

Once topic selection is done and it is accepted by department, we should start focusing on refining the topic and finding something like

  • Issue for investigating
  • What we want to prove, disapprove or discover
  • Research limitations

6. Effectual planning of the research

Well!  Research proposal  is the detailed explanation of the whole project that we are going to conduct. It is like a formal need. It should include your thinking about the research problem, all discussions with your guide and all initial findings on the topic.

This step will include strategies to manage the time and how effectively we carry out all tasks. A plan should be made in such a way that it should allocate required time for each and every task. For this we have to see how much total time we have and accordingly we will divide time for each task. It is vital to remain as much realistic as we can about the timing each task will take. The more focused we will remain at the planning stage the more hours we can save while carrying out task. Better to note down about all the resources we need in each stage like how much time we should spend in  library , working hours, equipment lists, space required etc.

It is one of the common problems while conducting research and we should remain well prepared for it. For  several reasons people procrastinate  like for improper management of time, dauted by scale of the work, motivation loss, perfectionism, negative thoughts and many more. When we recognize these problems early, it will help us in minimizing it to larger extent. To avoid we should be realistic about when we should start, devote more time for planning and revising the research plan, allocation of proper time, highly focused etc.

Early identification of the signs of procrastination will give you the best chance of minimizing any negative effects. Once you suspect that you are procrastinating, it can be helpful to review what you are expecting of yourself, and check that those expectations are realistic. This is where planning is vital. After a research plan is made it is a better idea to show it to some other people of our team or our teachers/guides, who can help us in finding out some missing tasks, or some mistakes.

Conducting Research

After the planning stage is over now comes the time to conduct the research. Here also we should remain highly organized and methodical to achieve success. Let’s have a discussion on each step.

6 thoughts on “How to Plan and Conduct a Research Project: 12 Simple Steps”

We are a group of volunteers and starting a new scheme in our community. Your website offered us with valuable info to work on. You have done an impressive job and our whole community will be thankful to you.|

Very impressive

I find the explanation given very informative.

informative

excellent work

your planning is very helpful for me. please this written planning doc file send me.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism. Run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved April 9, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

  • High School
  • College Search
  • College Admissions
  • Financial Aid
  • College Life

Your Guide to Conducting Independent Research Projects

A dense textbook lays open. Dispersed through the pages are red, blue, and yellow tabs.

For me, asking questions is the best way to stay curious and inspire others.

I am currently earning my undergraduate degree in Dance and minor in Modern Languages – French at Point Park University . I am a part of their honors program in which I have been given various opportunities to do research that has been published and presented at national conferences.

I want to note that you do not have to do research through an organization. The project I’m currently working on is for a conference and will not receive any academic credit for it.

You probably have already done a research project and did not even realize it. I was first introduced to how to do research in high school, so after finding what worked best for me, I wanted to share my process to make the project less daunting and more fun. 

Step 1: Define the project 

What is your subject?

Normally the subject is related to your major, but if you are interested in a subject, your project can be based on something you have no previous knowledge about.

When applying to conferences, my research typically fit under a certain category and theme. When choosing a subject, look at the requirements closely to determine if the subject will work. 

What is its purpose? 

Answer the question: Why do I want to do this research project?  Is it to forward your academic goals, spread awareness, inform or persuade a group of people, or to learn more about a subject you are passionate about?

Having a purpose behind your work can fuel your passion and help with motivation. Whatever your research entails will make an impact, so recognizing this could also help you feel more fulfilled after it is finished. 

If you have to do it as a requirement, try to reframe your mindset to a more positive one where you can find something positive to gain from your research. This could be a new skill acquired or improved upon.

What format will it be in?  

Some examples of different formats could be an essay, poster, speech, or an artistic piece.

Depending on the format, there could be different requirements for the information or an element incorporated that is not included in the other formats. 

If you have a choice of format, be sure to assess your strengths and weaknesses. I pride myself on being a good public speaker and performer, so I prefer giving a speech rather than writing an essay. 

However, if you want to improve a certain skill, you could choose a format that challenges a skill you want to work on.

What question is being answered? 

I have been taught that good research answers a complex but specific question. Therefore, create a question that requires critical thinking and is focused enough to be answered by a comprehensive thesis statement.

Step 2: Gather information

This may be self-explanatory, but it’s time to research! H ave a variety of primary, secondary, and tertiary sources.

  • Examples: Journals/Diaries, Speeches, Photographs, Raw Data 
  • Examples: Journal Articles, Biographies, Textbooks / Encyclopedias / Dictionaries 
  • Examples: Manuals, Textbooks / Encyclopedias / Dictionaries, Bibliographies

Good places to find sources are your local library, school databases, or Google Scholar .  Since not everything on the internet is true, vetting your source is crucial.  Some things to keep in mind before using a source are the author, time period, peer-review status, publisher, and intended audience.  

Step 3: Compile findings and provide a takeaway

Using the data you have collected to support your thesis, answer your initial question. This article explains how different kinds of theses are used in different research contexts. 

The thesis is generally at the end of the first introductory paragraph. Coming up with a thesis is easier said than done, but finally reaching an answer should be gratifying.

Make sure all the points in your paper answer the initial question and support the amazing thesis you just created.  You may need to write a proposal or abstract for your research. 

Try to focus on the main ideas in your work and provide a bit of context that would make the reader or listener more interested to learn additional information.

Be sure to proofread your work, double check it meets all the requirements, and verify your citations are in the correct citation style.

A service I find useful to check my grammar is Grammarly . You can also get your friends to look over it and get their thoughts. 

Step 4: *Optional* Peer / Advisor Review

On my research projects, I have had the privilege of having an advisor to give me advice who is an expert in the field of research I am interested in. This advisor offered great advice when I got stuck or needed a push in the right direction.

Some tips on finding an advisor are to:

  • See if their past research aligns with what you are interested in
  • Investigate how other’s experiences were if they have been an advisor in the past
  • Reach out through email or attend their office hours to see if they would be interested in helping you
  • Keep your options open because you never know who you could have the potential to connect to

Starting an independent research project can be scary. Whether your research is formal or informal, I encourage you to keep learning and asking questions.

In the words of author, anthropologist, and filmmaker Zora Neale Hurston, “Research is formalized curiosity. It is poking and prying with a purpose.”

Good luck! You got this. We would love to hear your experiences and how you found where you belong , so direct message us on Instagram for a chance to be featured.

' src=

Author: Rosalie Anthony

Rosalie is currently attending Point Park University earning her Dance- B.F.A degree with a minor in French. Previously, she attended and graduated from the Alabama School of Fine Arts in dance. She is passionate about learning, teaching and mentoring. In her spare time, she enjoys working out, chatting with friends, and discovering new places to go in Pittsburgh.

More Articles By Niche

When it comes to extracurricular activities, there’s no set rule concerning how many you should be involved in or how involved you must be.

It may seem like a daunting task, but securing an internship as a high school student is a realistic and possible thing.

Here you’ll find information about how best to be prepared to meet with your college/career counselor so that they can help you achieve your goals. They were really helpful when I was going through the college application process.

A collection of classical literature including Thucydides Historiae.

How to write a research proposal

Drafting your first research proposal can be intimidating if you’ve never written (or seen) one before. Our grad students and admissions staff have some advice on making a start.

Before you make a start

Is it a requirement for your course.

For some research courses in sciences you’ll join an existing research group so you don’t need to write a full research proposal, just a list of the groups and/or supervisors you want to work with. You might be asked to write a personal statement instead, giving your research interests and experience.

Still, for many of our research courses — especially in humanities and social sciences — your research proposal is one of the most significant parts of your application. Grades and other evidence of your academic ability and potential are important, but even if you’re academically outstanding you’ll need to show you’re a good match for the department’s staff expertise and research interests. Every course page on the University website has detailed information on what you’ll need to send with your application, so make sure that’s your first step before you continue:

There are many ways to start, I’ve heard stories about people approaching it totally differently. Yannis (DPhil in Computer Science)

How to begin?

There isn’t one right way to start writing a research proposal. First of all, make sure you’ve read your course page - it’ll have instructions for what to include in your research proposal (as well as anything to avoid), how your department will assess it, and the required word count.

Start small, think big

A research degree is a big undertaking, and it’s normal to feel a bit overwhelmed at first. One way to start writing is to look back at the work you’ve already done. How does your proposed research build on this, and the other research in the area? One of the most important things you’ll be showing through your research project is that your project is achievable in the time available for your course, and that you’ve got (or know how you’ll get) the right skills and experience to pull off your plan.

They don’t expect you to be the expert, you just have to have good ideas. Be willing to challenge things and do something new. Rebecca (DPhil in Medieval and Modern Languages)

However, you don’t have to know everything - after all, you haven’t started yet! When reading your proposal, your department will be looking at the potential and originality of your research, and whether you have a solid understanding of the topic you’ve chosen.

But why Oxford?

An Admissions Officer at one of our colleges says that it’s important to explain why you’re applying to Oxford, and to your department in particular:

“Really, this is all dependent on a department. Look at the department in depth, and look at what they offer — how is it in line with your interests?”

Think about what you need to successfully execute your research plans and explain how Oxford’s academic facilities and community will support your work. Should I email a potential supervisor? Got an idea? If your course page says it’s alright to contact a supervisor (check the top of the How to apply section), it’s a good idea to get in touch with potential supervisors when you come to write your proposal.

You’re allowed to reach out to academics that you might be interested in supervising you. They can tell you if your research is something that we can support here, and how, and give you ideas. Admissions Officer 

You’ll find more information about the academics working in your area on your department’s website (follow the department links on your course page ). John (DPhil in Earth Sciences) emailed a professor who had the same research interests as he did.

“Luckily enough, he replied the next day and was keen to support me in the application.”

These discussions might help you to refine your ideas and your research proposal.

Layal says, “I discussed ideas with my supervisor — what’s feasible, what would be interesting. He supported me a lot with that, and I went away and wrote it.”

It’s also an opportunity to find out more about the programme and the department:

“Getting in touch with people who are here is a really good way to ask questions.”

Not sure how to find a potential supervisor for your research? Visit our How-to guide on finding a supervisor .

Asking for help

My supervisors helped me with my research proposal, which is great. You don’t expect that, but they were really helpful prior to my application. Nyree (DPhil in Archaeological Science)

Don’t be afraid to ask for advice and feedback as you go. For example, you could reach out to a supervisor from your current or previous degree, or to friends who are also studying and could give you some honest feedback.

More help with your application

You can find instructions for the supporting documents you’ll need to include in your application on your course page and in the Application Guide.

Applicant advice hub

This content was previously available through our  Applicant advice hub . The hub contained links to articles hosted on our  Graduate Study at Oxford Medium channel . We've moved the articles that support the application process into this new section of our website.

  • Application Guide: Research proposal

Can't find what you're looking for?

If you have a query about graduate admissions at Oxford, we're here to help:

Ask a question

Privacy Policy

Postgraduate Applicant Privacy Policy

Older Adults

  • Falls Prevention
  • Work and Retirement
  • Social Isolation & Loneliness
  • Healthy Eating

Professionals

  • Center for Benefits Access
  • Center for Healthy Aging
  • National Institute of Senior Centers
  • Aging Mastery®
  • NCOA Connect
  • NCOA Policy Positions
  • Latest Policy Issues
  • Action Center
  • Advocacy Basics
  • Events & Education

Find us on Social

Falls Prevention for Professionals

National falls prevention fellowship program.

Print this page

 alt=

Key Takeaways

The Administration for Community Living (ACL) and NCOA aim to cultivate leaders in the falls prevention network. 

Up to four fellows will each be awarded up to $50,000 to conduct a policy, research, and/or programmatic project that addresses systemic barriers to preventing falls.

The application deadline is May 10, 2024.

The goal of the ACL/NCOA National Falls Prevention Fellowship Program is to cultivate leaders who will explore research and champion systems change solutions focused on mitigating older adult falls, falls risk factors, and fall-related injuries to reduce the personal and financial costs of older adult falls and improve the lives of older adults. 

What are the objectives of the National Falls Prevention Fellowship Program?

  • Increase and enhance leadership in falls prevention 
  • Increase fellows' knowledge and skills in falls prevention policy, service delivery, and research
  • Produce novel practices and systems change solutions that address gaps in knowledge and barriers to reducing falls, falls risk factors, and fall-related injuries among older adults

What is the National Falls Prevention Fellowship Program?

The National Falls Prevention Fellowship Program aims to cultivate leaders in the falls prevention network. Up to four fellows will each be awarded up to $50,000 to conduct a policy, research, and/or programmatic project that addresses systemic barriers to preventing falls. Fellows will be selected based on their: experience; commitment to falls prevention issues; leadership potential; and interest in systems change approaches to reduce falls, falls risk factors, and fall-related injuries, aiming to improve the lives of older adults and reduce the personal and financial costs of older adult falls. The fellowship program has an interdisciplinary focus and seeks applicants who are forward-thinking individuals with diverse backgrounds and interests including addressing the needs of traditionally underserved populations at high risk for falls.  

Core components of the year-long fellowship will include: engagement with a broad range of national experts from public, private, and non-profit sectors to foster collaboration across diverse sectors; development opportunities to enhance fellows’ knowledge around key falls prevention and related issues; mentorship to develop leadership skills and build knowledge and skills that support fellows’ career goals and enhance their ability to affect change; and monthly meetings with the NCOA Policy and Advocacy Team to provide insight into the policy-making process and regulations that impact health and social care concerning falls and injury prevention, aiming to foster systems change approaches and solutions that reduce falls among older adults in the U.S.   

Fellows will create a fellowship plan and individualized learning objectives in collaboration with NCOA to ensure that the fellowship experience supports their current and long-term goals. NCOA will review these plans with each fellow during regular meetings throughout the program to identify areas for assistance as needed.

Fellows will develop and implement a capstone project that identifies and addresses a barrier, problem, or need related to falls among older adults and is designed to have long-term impact and significant contributions to the field. These projects may vary in topic, but all will share the theme of systems change approaches to reduce falls, falls risk factors, and fall-related injuries. They should demonstrate the potential to impact policy, contribute knowledge, build partnerships, develop solutions, and/or identify collaborative strategies encompassing clinical, community, and technological interventions to advance the recognition and management of older adult falls as a chronic condition. Capstone projects may include studies, practical experience at regulatory agencies and/or organizations, workshops, public lectures, or other professional experiences. Capstone project topics will be determined by each fellow in collaboration with NCOA, ACL, and the Fellowship Advisory Committee.

Fellows will present their capstone project plans at NCOA’s National Falls Prevention Summit, Sept. 9-10 in Arlington, Virginia, and submit a paper to a peer reviewed journal on the capstone project process and/or findings.

Eligibility

This fellowship opportunity is open to applicants from diverse backgrounds and interests,including, but not limited to, practitioners, clinicians, academics, and community leaders. The fellowship program seeks forward-thinking individuals who contribute diverse perspectives related to race, ethnicity, gender, and discipline. Candidates from underrepresented groups are strongly encouraged to apply. Applicants must be U.S. citizens or permanent residents of the U.S. or its territories who have career plans and anticipate continued work in the U.S. after the fellowship period. It is expected that, barring unforeseen emergencies, fellows will engage in the fellowship for the full one-year tenure of the award. We seek to award fellows at any point in their career trajectory, with at least 5 years of relevant experience.

Application timeline

Frequently asked questions.

What are the fellowship selection criteria?

Selection criteria are based on experience, commitment to falls prevention issues, leadership potential, and interest in developing systems change that would have a long-term impact on reducing falls, falls risk factors, and fall-related injuries to improve the lives of older adults.

What are examples of fellowship topics you would like to see in the applications?

Fellowship topics may include but are not limited to falls prevention in relation to:

  • Age-friendly communities
  • Diversity, equity, and inclusion
  • Emergency response services/first responders
  • Health disparities
  • Health systems
  • Health technology
  • Home and community-based services
  • Clinical and community models of care
  • Implementation science
  • Interprofessional practice and education
  • Long-term care and long-term services and supports
  • Person-centered care
  • Policy and/or regulatory change
  • Public health
  • Rural health
  • Service delivery
  • Social determinants of health

Fellows are also encouraged to explore how the field could move toward recognizing and managing older adult falls as a chronic condition. 

What personal qualities, skills, or experiences is the program seeking?

The program seeks forward-thinking individuals who are willing to challenge themselves. They will demonstrate leadership in their work, initiative, curiosity, openness to new ideas, and problem-solving skills. Other preferred qualities include critical thinking, strong written and verbal communication skills, a commitment to their work, and an understanding of the U.S. heath and aging policy landscape.

What is the estimated time commitment each month of the fellowship?

Fellows will devote an estimated 10-15 hours per month of the one-year fellowship plus participation in a two-day National Falls Prevention Summit in Arlington, Virginia, where they will present on their capstone project plan.

How do I apply for the National Falls Prevention Fellowship Program?

The fellowship application consists of three essay questions and supporting documents including a CV/resume and three letters of reference (one from applicants’ current institution or organization and two from colleagues or mentors). Learn more or complete an application .

Applicants should log in to the application portal and familiarize themselves with the online application requirements well before the submission deadline. Please note that in the 24-hour period leading up to the application deadline, staff may not be able to assist all applicants with any system-related issues. Applicants are encouraged to submit their application well before the deadline so that any unforeseen difficulties or technical problems may be addressed in advance.

While late submissions will not be accepted, NCOA may choose, at its sole discretion, to extend the application deadline for all applicants. NCOA strives to give all applicants any support needed to successfully submit their application prior to the deadline. Submission is defined as all sections completed, marked finished, the application “submit” button used, and the application status shows “Submitted.”

How does NCOA work in falls prevention?

NCOA is funded by the Administration for Community Living (ACL) to lead the National Falls Prevention Resource Center. The National Falls Prevention Resource Center (NFPRC) provides leadership, guidance, and technical assistance to the falls prevention network of partners, including ACL-funded Falls Prevention grantees, state and local aging and public health agencies, and community-based organizations to increase public awareness about the risk of falls and how to prevent them.

The Resource Center also serves as a national clearinghouse to highlight and share best practices, resources, and information on evidence-based falls prevention programs and other evidence-based programs and practices. 

The Fellowship Program will support the mission and efforts of the National Falls Prevention Resource Center by exploring gaps in service and barriers to service delivery, identifying solutions, and advancing systems change approaches to address the barriers that many providers encounter in their work to support the health, safety, and independence of the older adults they serve. 

Please email [email protected] with any questions regarding the National Falls Prevention Fellowship program opportunity.

Related Articles

NCOA's Falls Prevention Resource Center is soliciting applications from organizations to develop innovative approaches to older adult falls prevention.

Apr 01, 2024

Grant Opportunity: Innovations in Falls Prevention

Our fact sheet tells you more about how osteoarthritis relates to falls risk and how you can take action to protect yourself.

Mar 29, 2024

Osteoarthritis and Falls: Understanding the Connection and Protecting Your Well-Being

Cropped shot of a Black man sitting down, suffering from arthritis in his hand.

Mar 13, 2024

Get the Facts on Osteoporosis, Falls, and Broken Bones

Learn more about the model designed to help professionals build a transdisciplinary team to best address the home modification needs of older adults.

Delivering Home Modifications that Meet Older Adults’ Needs

How Falls Prevention Programs Are Improving Older Adults' Lives

Feb 12, 2024

How Falls Prevention Programs Are Reaching Older Adults: Biggest Wins and Lessons Learned

A senior woman is smiling while her younger female caregiver embraces her with a hug from behind.

Let's keep in touch.

  • Manage Gifts
  • NCOA Partners and Programs Near You
  • Find an Evidence-Based Program

Follow Us on Social

© 2023 National Council on Aging, Inc.

251 18th Street South, Suite 500, Arlington, VA 22202

  • Privacy Policy
  • Terms of Service
  • Ethics & Compliance

This site uses cookies.

We use cookies to give you the best experience on our website. For more information on what this means and how we use your data, please see our Privacy Policy

how to conduct a research project

Identify a Research Interest

Choosing a research interest involves staying open-minded, curious, and passionate about the subject you choose.

Remember that your research interest may change over time. It's okay to take your time in choosing a research area. Exploring multiple options, seeking advice, and researching different projects or mentors can all be part of the process.

Discover Your Research Interest

Reflect on your passions & interests.

Start by thinking of topics or issues that genuinely spark your curiosity. Consider the academic material you enjoy the most and pay attention to books, articles, documentaries, or films that capture your attention.

Consider Your Career Goals

Think about the type of job or career you see yourself in after graduation. What skills and knowledge do you need to achieve your career goals?

Talk with Professors & Advisors

Your professors and academic advisors are valuable resources. Discuss your interests and career goals with them, as they may be able to guide you in identifying potential research areas.

Consult with Other Students

Talk to other students who are already involved in research projects within your department or field of study. They can share their experiences, insights, and recommendations for research mentors or opportunities.

Explore Existing Research

Conduct a literature review by reading academic papers and publications in your chosen field. This will help you understand current research trends, identify gaps in your knowledge, and clarify areas of interest.

Review Your Academic History

Look at the courses you have taken and those you plan to enroll in. Consider topics or assignments that had a lasting impact, as they may indicate strong areas of interest.

Participate in Seminars & Workshops

Attend departmental seminars, workshops, and conferences where researchers often present their work. Engaging with experts and their research may help you narrow down your areas of interest.  

Network & Collaborate

Join relevant student organizations and connect with individuals who share your interests. Building a network can expose you to a wide range of research topics and potential collaborators.

Consider Real-World Issues

Think about the real-world problems or issues that matter to you. Identifying a concern you are passionate about can lead you to a research area.

Experiment & Test

If you are torn between several interests, consider taking on smaller research projects or enrolling in classes in different areas. This can help you determine which topics interest you the most.

By clicking any link on this page you are giving your consent for us to set cookies, Privacy Information .

  • Apply to UMaine

UMaine News

An aerial photo of Winslow Hall

Forty-one faculty members receive tenure and/or promotion

At the University of Maine and University of Maine at Machias, 41 faculty members have received tenure and/or promotion this spring. The annual announcement recognizes outstanding achievement in teaching, scholarship and research, and community engagement.

Tenure for 19 of the faculty members was approved by the University of Maine System Board of Trustees on April 8.

“These distinguished faculty members enhance the UMaine and UMaine Machias student experience, contributing significantly to the mission of the state’s R1 university by addressing needs in Maine and beyond. Their notable achievements and impactful contributions through teaching, scholarship and outreach are a source of great pride for us,” says John Volin, Executive Vice President for Academic Affairs and Provost at UMaine.

University of Maine

Promoted to professor.

College of Earth, Life, and Health Sciences

  • Seanna Annis, Mycology
  • Erik Blomberg, Wildlife Population Ecology
  • Stephanie Burnett, Horticulture
  • Sandra De Urioste-Stone, Nature-Based Tourism
  • Jacquelyn Gill, Terrestrial Paleoecology
  • Hamish Greig, Stream Ecology
  • Mehdi Tajvidi, Renewable Nanomaterials
  • Robert Wheeler, Microbiology

College of Liberal Arts and Sciences

  • Brian Frederick, Chemistry
  • Sarah Harlan-Haughey, English

Maine Business School

  • Susan Myrden, Marketing

Promoted to Extension Professor

Cooperative Extension

  • Lisa Phelps, Cooperative Extension

Promoted to Associate Professor with Tenure

  • Margaret Estapa, Chemical Oceanography
  • Amanda Klemmer, Landscape Ecology
  • Ling Li, Sustainable Bioenergy Systems
  • Jade McNamara, Human Nutrition
  • Suzanne Ishaq Pellegrini, Veterinary Sciences
  • Kathryn Robinson, Nursing
  • Jay Wason, Forest Ecosystem Physiology
  • Fayeza Ahmed, Psychology
  • Robert Ballingall, Political Science
  • Jack Buttcane, Mathematics
  • Sepideh Ghanavati, Computer Science
  • Kathryn Swacha, Professional and Technical Writing

College of Liberal Arts and Sciences and Honors College

  • Hao Hong, Philosophy and Honors
  • Muralee Das, Management
  • Nadège Levallet, Management and Information Systems
  • William Obenauer, Management

Maine College of Engineering and Computing

  • Onur Apul, Environmental Engineering

Awarded Tenure at Current Rank of Associate Professor

  • Michael Haedicke, Sociology
  • Quijie Zheng, Business Analytics

Promoted to Associate Extension Professor/Associate Professor with Continuing Contract 

  • Lily Calderwood, Horticulture

Promoted to Associate Research Professor

  • Erin Simons-Legaard, Forest Resources

Promoted to Senior Lecturer with Just-Cause Protection

  • Jessica Lewis, Communication Sciences and Disorders
  • Eileen Molloy, Didactics
  • Ayesha Maliwal Bundy, Mathematics
  • Mary Plymale Larlee, Academic Writing
  • Sarah Lindahl, Chemistry
  • Derek Michaud, Philosophy
  • Stefano Tijerina, Management
  • Robert Bowie, Bioengineering

  Contact: Shelby Hartin, [email protected]

  • UMaine Today Magazine
  • Submit news

How To Conduct Meticulous User Research For Your Apps

Siri Kaliparambil

“I had an hour to solve a problem and my life depended on the solution, I would spend the first 55 minutes determining the proper question to ask, for once I know the proper question, I could solve the problem in less than five minutes.”

The above quote by the eminent theoretical physicist, Albert Einstein, is the essence of what user research is and demonstrates its significance in any business model. To put it simply, user research is the activity of understanding the user’s behavioral patterns and needs to formulate the quintessential product or service. This research involves the employment of qualitative and quantitative measures to assess the impact of a probable solution on the general audience. Conducting thorough user research not only helps you to understand the users’ requirements but also helps a business to develop apt solutions and design the product accordingly to provide a great user experience.

Quality user research is not just about collecting and laying out random data, but about analysing and composing it to design a product which fills the gap in the market. It also helps developers to avoid their own biases and create products that genuinely fulfil the needs of the masses. Without sufficient understanding of the market, it is impossible to tell the difference between a product that merely looks good and one that genuinely fulfills the needs of users.

1-01-4.png

Make user research the first step of your project

It is crucial to understand a product and gain insights before designing it. While thorough research is integral throughout the development of a product or a service, it is essential to make it the first step of your journey. This not only helps you to understand the needs of the market better, but also helps developers to make logical decisions pertaining to the development process. Making UX research the primary process also helps you to design a better product without the need of retrospecting multiple times, hence preventing the need to look back multiple times along the way to fix hitches.

Establish a solid plan to go ahead

To create the ideal product, it is important to structure a solid plan to define the development flow of the product. In-depth user research helps you to understand the product extensively, which in turn helps the team to identify the scope of the project in order to plan the project better. Defining a clear end-goal is integral to any project is of utmost importance as it helps developers to work out effective risk-free sprints with practical deadlines. During this process, it is cardinal to ask questions specific to the product and come up with definitive answers to establish a clear plan. The more comprehensive the strategy of the project is, the more productive will the development plan be!

Conduct effective user research practices for your project

Once you formulate an effective development plan for your project, the next step is to conduct extensive research and pick out the best user research methods which will help you arrive with the most fruitful results. It is important to conduct both quantitative and qualitative analysis to determine the marketability of the product. Qualitative research helps you understand the behavioral patterns of the audience while ascertaining the quantitative aspects helps you come up with valid statistical data which you can use to leverage your product. The most important facet of conducting meticulous user research is determining the context of use of such data and how it applies to the product.

1-01-4.png

Communication is key

While all of the points discussed above are of extreme importance when it comes to conducting user research to understand a product, none of it will be worthwhile without effective communication along the way. It is important to record the data derived from the user research and converse convincingly with all stakeholders and team members involved in the execution of the project. Documentation of data is of foremost importance as it helps you to scrutinise and go through the data at any point. Make sure that you have necessary facts and figures to support your findings and have meetups with everyone onboard on a regular basis. It is crucial to ensure that everyone involved is not only on the same page, but that they thoroughly understand and believe in the development process and the idea behind it.

Make UX research an ongoing process

The market is dynamic with users’ tastes being everchanging and it is crucial to understand this fact when developing any product. While we have already examined why it is important to conduct user research as the preliminary process of the development plan, it is equally significant to make sure that this is a recurring process in order to cater to the varying needs to ensure that your ideas are not outdated. In the digital age where technology is evolving at a rapid pace, it is integral to keep up and adopt the latest trends which will have a direct impact on the marketability of the product; this can be achieved through continual user research

The customer is king and it is important to design any product keeping in mind their various needs. Meticulous user research not only helps you develop the perfect product but it also ensures a great user experience. As Frank Chimero has famously said, ”People ignore design that ignores people” , it is necessary to keep in mind that only thorough user research can help you build up an ideal and successful product that caters to the consumers’ requirements

Hire our Development experts.

Related blogs, let's build your product together.

Get a free discovery session and consulting to start your project today.

The Trevor Project logo

VP of Partnerships and Philanthropy

What you'll do:.

  • Develop and implement strategic plans to identify, cultivate, and steward corporate partnerships that align with the organization's mission and goals.
  • Lead efforts to secure financial support from corporate partners, including sponsorships, grants, and cause marketing campaigns, with a focus on achieving annual fundraising targets.
  • Build and maintain strong relationships with corporate partners, serving as the primary point of contact and ensuring their needs and expectations are met.
  • Work closely with internal teams, including programmatic, marketing, and finance departments, to ensure alignment and integration of corporate partnerships with organizational priorities.
  • Conduct research to identify prospective corporate partners and develop tailored solicitation strategies to engage them effectively.
  • Prepare compelling funding proposals, presentations, and pitches to secure support from corporate partners, highlighting the impact and value of partnership opportunities.
  • Negotiate partnership agreements and contracts, ensuring terms are mutually beneficial and aligned with organizational objectives.
  • Track and analyze key performance metrics related to corporate partnerships, providing regular reports and updates to senior leadership.
  • Supervise and mentor a team of corporate partnership professionals, providing guidance, support, and professional development opportunities.
  • Qualifications:
  • Learn eagerly, share knowledge appropriately, and improve continuously
  • Demonstrate successful planning and problem-solving skills, including multitasking and working well within tight timelines
  • Work, communicate, and collaborate effectively with others
  • Demonstrate attention to detail and accuracy in all work
  • Demonstrate a commitment to fostering and maintaining an environment of diversity, inclusion, and belonging
  • Other relevant duties and responsibilities as assigned

Minimum Qualifications

  • Minimum of 10+ years of experience in corporate fundraising or business development, preferably within the nonprofit sector.
  • Proven track record of securing and managing large-scale corporate partnerships, with a focus on revenue generation and impact.
  • Strong understanding of corporate philanthropy, CSR, and cause marketing trends and best practices.
  • Excellent communication and interpersonal skills, with the ability to build rapport and negotiate effectively with corporate stakeholders.
  • Strategic thinker with the ability to develop and implement innovative partnership strategies.
  • Demonstrated leadership experience, including managing teams and driving results in a fast-paced environment.
  • Proficiency in spoken and written English

The Trevor Project Home Page

COMMENTS

  1. A Beginner's Guide to Starting the Research Process

    Conduct an initial literature review to begin gathering relevant sources. As you read, take notes and try to identify problems, questions, debates, contradictions and gaps. ... and how your research project will contribute to solving it. >>Read more about defining a research problem. Step 3: Formulate research questions. Next, based on the ...

  2. How to plan a research project

    Because the focus of this Guide is on planning a research project, as opposed to conducting a research project, this section won't delve into the details of data-collection or analysis; those steps happen after you plan the project. In addition, the topic is vast: year-long doctoral courses are devoted to data and analysis. ...

  3. How to do a research project for your academic study

    Conducting research For a research project, you will need to conduct primary research. This is the original research you will gather to further develop your research project. The most common types of primary research are interviews and surveys as these allow for many and varied results. Examples of primary research include: Interviews and surveys

  4. Where to Begin

    Research: Where to Begin. Research isn't something that only scientists and professors do. Any time you use sources to investigate claims or reach new conclusions, you are performing research. Research happens in virtually all fields, so it's vitally important to know how to conduct research and navigate through source material regardless of ...

  5. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  6. How to Write a Research Proposal

    Research proposal examples. Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management".

  7. How to Research: 5 Steps in the Research Process

    How to Research: 5 Steps in the Research Process. Written by MasterClass. Last updated: Mar 18, 2022 • 3 min read. Research is an essential process to keep yourself informed on any topic with reliable sources of information. Research is an essential process to keep yourself informed on any topic with reliable sources of information.

  8. Research Process

    By conducting rigorous and well-designed research, researchers can make significant contributions to their field and help to shape future research. Tips for Research Process. Here are some tips for the research process: Start with a clear research question: A well-defined research question is the foundation of a successful research project. It ...

  9. Key Steps in the Research Process

    Create a realistic project strategy for your research project, breaking it down into manageable stages or milestones. Consider factors such as resource availability and potential bottlenecks. ... Step 5: Conduct the Research. With your research plan in place, it's time to dive into the data collection phase. As you conduct your research, adhere ...

  10. Research Design

    Table of contents. Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies.

  11. How to do a Research Project: 6 Steps

    Step 1: Find the right supervisor. Step 2: Don't be shy, ask! Step 3: Select the right topic. Step 4: Keep your plan realistic. Step 5: Prepare a project timeline. Step 6: Write, write and write. 1. Find the right supervisor. My professor asked a faculty member to become my supervisor.

  12. Conducting Research: A Step-by-Step Guide

    Steps to Conducting Research. It's essential to note that there are different types of research: Exploratory research identifies a problem or question.; Constructive research examines hypotheses and offers solutions.; Empirical research tests the feasibility of a solution using data.; That being said, the research process may differ based on the purpose of the project.

  13. How to Conduct Effective Research: Tips and Tricks for Beginners

    2. Develop a Research Plan. A roadmap is essential for effective research. Describe your strategy while considering the type of information you require, potential sources, and a rough time frame. You can effectively manage your time by taking this step, which will also give your research structure and keep you on track.

  14. PDF How to write a research project

    research work, being asked to complete a research project for the first time might seem fairly intimidating. It doesn't need to be, though, and this study guide is designed to make sure that it isn't. This booklet is a guide to some of the most important aspects of research projects. Whether the project is as small as a research

  15. How to carry out a research project

    Start by following these six steps: Choose a question or problem area to research; Form a hypothesis; Select a method, plan and collect the data; Analyse the data collected; Summarise your observations and draw a conclusion; Write a project report and communicate the results. Forskningsradet.no. Nysgjerrigper.

  16. How to Get Started With a Research Project: 12 Steps

    Just be careful that you don't end up stuck with an idea you want to do, but are afraid to do because you know someone else did it before. 4. Think from all angles. If you have at least a little direction based on the project guidelines, take that basic direction and start turning it over and over in your mind.

  17. A Step-By-Step Guide to Approaching Complex Research Projects

    Like a coach devising a roadmap for winning, having a guide for how to conduct research can completely reshape how you approach your projects and maximize your chance at achieving successful outcomes. To better understand what I mean, let's rip a page from my seasons of being a team leader. ... Roughly speaking, a research project should ...

  18. 15 Steps to Good Research

    Select the most appropriate investigative methods (surveys, interviews, experiments) and research tools (periodical indexes, databases, websites). Plan the research project. Retrieve information using a variety of methods (draw on a repertoire of skills). Refine the search strategy as necessary.

  19. How to Conduct Responsible Research: A Guide for Graduate Students

    Abstract. Researchers must conduct research responsibly for it to have an impact and to safeguard trust in science. Essential responsibilities of researchers include using rigorous, reproducible research methods, reporting findings in a trustworthy manner, and giving the researchers who contributed appropriate authorship credit.

  20. How to Plan and Conduct a Research Project: 12 Simple Steps

    Let's have a brief and clear discussion on what we should do for achieving success in our research project. Well! For planning and conduction we have to go through following steps. Planning. 1. Topic selection. Many of us have a clear research topic of mind but some are also there who come up with various ideas.

  21. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  22. Research Methodology

    Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect, analyze, and interpret data to answer research questions or solve research problems.

  23. Your Guide to Conducting Independent Research Projects

    Step 2: Gather information. This may be self-explanatory, but it's time to research! Have a variety of primary, secondary, and tertiary sources. Good places to find sources are your local library, school databases, or Google Scholar . Since not everything on the internet is true, vetting your source is crucial.

  24. How to write a research proposal

    John (DPhil in Earth Sciences) emailed a professor who had the same research interests as he did. "Luckily enough, he replied the next day and was keen to support me in the application.". These discussions might help you to refine your ideas and your research proposal. Layal says, "I discussed ideas with my supervisor — what's ...

  25. Falls Prevention Fellows Needed

    The National Falls Prevention Fellowship Program aims to cultivate leaders in the falls prevention network. Up to four fellows will each be awarded up to $50,000 to conduct a policy, research, and/or programmatic project that addresses systemic barriers to preventing falls. Fellows will be selected based on their: experience; commitment to ...

  26. Identify a Research Interest

    Identify a Research Interest. Choosing a research interest involves staying open-minded, curious, and passionate about the subject you choose. Remember that your research interest may change over time. It's okay to take your time in choosing a research area. Exploring multiple options, seeking advice, and researching different projects or ...

  27. UMaine News

    April 8, 2024. At the University of Maine and University of Maine at Machias, 41 faculty members have. received tenure and/or promotion this spring. The annual announcement recognizes outstanding. achievement in teaching, scholarship and research, and community engagement. Tenure for 19 of the faculty members was approved by the University of ...

  28. How To Conduct Meticulous User Research For Your Apps

    To create the ideal product, it is important to structure a solid plan to define the development flow of the product. In-depth user research helps you to understand the product extensively, which in turn helps the team to identify the scope of the project in order to plan the project better. Defining a clear end-goal is integral to any project ...

  29. WHO/IBP Network Virtual Consultation on Social and Behavior Change

    Join the WHO IBP Network and the UN Special Programme HRP for a Virtual Consultation on Social and Behaviour Change (SBC) for Family Planning.The engagement of Civil Society Organizations (CSOs) has been a part of the WHO Department of Sexual and Reproductive Health (SRH) architecture for over 20 years through research partnerships with the UN Special Program on Human Reproduction (HRP) and ...

  30. The Trevor Project

    The Trevor Project is the leading suicide prevention and crisis intervention organization for LGBTQ+ young people. Our non-profit provides 24/7 life-saving support via phone, text, and chat. We also operate the world's largest safe space social networking site for LGBTQ+ youth and run innovative research, education, and advocacy programs.