water pollution project introduction

Giving Tuesday Offer: Your Gift Will Be Doubled!

Donate to NRDC this Giving Tuesday and join others doing their part to defend wildlife, protect our air and water, and safeguard our planet’s future. 

Your tax-deductible gift today will be 2X MATCHED!

Water Pollution: Everything You Need to Know

Our rivers, reservoirs, lakes, and seas are drowning in chemicals, waste, plastic, and other pollutants. Here’s why―and what you can do to help.

water pollution project introduction

  • Share this page block

What Is Water Pollution?

What are the causes of water pollution, categories of water pollution, what are the effects of water pollution, what can you do to prevent water pollution.

Water pollution occurs when harmful substances—often chemicals or microorganisms—contaminate a stream, river, lake, ocean, aquifer, or other body of water, degrading water quality and rendering it toxic to humans or the environment.

This widespread problem of water pollution is jeopardizing our health. Unsafe water kills more people each year than war and all other forms of violence combined. Meanwhile, our drinkable water sources are finite: Less than 1 percent of the earth’s freshwater is actually accessible to us. Without action, the challenges will only increase by 2050, when global demand for freshwater is expected to be one-third greater than it is now.

Water is uniquely vulnerable to pollution. Known as a “universal solvent,” water is able to dissolve more substances than any other liquid on earth. It’s the reason we have Kool-Aid and brilliant blue waterfalls. It’s also why water is so easily polluted. Toxic substances from farms, towns, and factories readily dissolve into and mix with it, causing water pollution.

Here are some of the major sources of water pollution worldwide:

Agricultural

water pollution project introduction

Toxic green algae in Copco Reservoir, northern California

Aurora Photos/Alamy

Not only is the agricultural sector the biggest consumer of global freshwater resources, with farming and livestock production using about 70 percent of the earth’s surface water supplies , but it’s also a serious water polluter. Around the world, agriculture is the leading cause of water degradation. In the United States, agricultural pollution is the top source of contamination in rivers and streams, the second-biggest source in wetlands, and the third main source in lakes. It’s also a major contributor of contamination to estuaries and groundwater. Every time it rains, fertilizers, pesticides, and animal waste from farms and livestock operations wash nutrients and pathogens—such bacteria and viruses—into our waterways. Nutrient pollution , caused by excess nitrogen and phosphorus in water or air, is the number-one threat to water quality worldwide and can cause algal blooms , a toxic soup of blue-green algae that can be harmful to people and wildlife.

Sewage and wastewater

Used water is wastewater. It comes from our sinks, showers, and toilets (think sewage) and from commercial, industrial, and agricultural activities (think metals, solvents, and toxic sludge). The term also includes stormwater runoff , which occurs when rainfall carries road salts, oil, grease, chemicals, and debris from impermeable surfaces into our waterways

More than 80 percent of the world’s wastewater flows back into the environment without being treated or reused, according to the United Nations; in some least-developed countries, the figure tops 95 percent. In the United States, wastewater treatment facilities process about 34 billion gallons of wastewater per day . These facilities reduce the amount of pollutants such as pathogens, phosphorus, and nitrogen in sewage, as well as heavy metals and toxic chemicals in industrial waste, before discharging the treated waters back into waterways. That’s when all goes well. But according to EPA estimates, our nation’s aging and easily overwhelmed sewage treatment systems also release more than 850 billion gallons of untreated wastewater each year.

Oil pollution

Big spills may dominate headlines, but consumers account for the vast majority of oil pollution in our seas, including oil and gasoline that drips from millions of cars and trucks every day. Moreover, nearly half of the estimated 1 million tons of oil that makes its way into marine environments each year comes not from tanker spills but from land-based sources such as factories, farms, and cities. At sea, tanker spills account for about 10 percent of the oil in waters around the world, while regular operations of the shipping industry—through both legal and illegal discharges—contribute about one-third. Oil is also naturally released from under the ocean floor through fractures known as seeps.

Radioactive substances

Radioactive waste is any pollution that emits radiation beyond what is naturally released by the environment. It’s generated by uranium mining, nuclear power plants, and the production and testing of military weapons, as well as by universities and hospitals that use radioactive materials for research and medicine. Radioactive waste can persist in the environment for thousands of years, making disposal a major challenge. Consider the decommissioned Hanford nuclear weapons production site in Washington, where the cleanup of 56 million gallons of radioactive waste is expected to cost more than $100 billion and last through 2060. Accidentally released or improperly disposed of contaminants threaten groundwater, surface water, and marine resources.

To address pollution and protect water we need to understand where the pollution is coming from (point source or nonpoint source) and the type of water body its impacting (groundwater, surface water, or ocean water).

Where is the pollution coming from?

Point source pollution.

When contamination originates from a single source, it’s called point source pollution. Examples include wastewater (also called effluent) discharged legally or illegally by a manufacturer, oil refinery, or wastewater treatment facility, as well as contamination from leaking septic systems, chemical and oil spills, and illegal dumping. The EPA regulates point source pollution by establishing limits on what can be discharged by a facility directly into a body of water. While point source pollution originates from a specific place, it can affect miles of waterways and ocean.

Nonpoint source

Nonpoint source pollution is contamination derived from diffuse sources. These may include agricultural or stormwater runoff or debris blown into waterways from land. Nonpoint source pollution is the leading cause of water pollution in U.S. waters, but it’s difficult to regulate, since there’s no single, identifiable culprit.

Transboundary

It goes without saying that water pollution can’t be contained by a line on a map. Transboundary pollution is the result of contaminated water from one country spilling into the waters of another. Contamination can result from a disaster—like an oil spill—or the slow, downriver creep of industrial, agricultural, or municipal discharge.

What type of water is being impacted?

Groundwater pollution.

When rain falls and seeps deep into the earth, filling the cracks, crevices, and porous spaces of an aquifer (basically an underground storehouse of water), it becomes groundwater—one of our least visible but most important natural resources. Nearly 40 percent of Americans rely on groundwater, pumped to the earth’s surface, for drinking water. For some folks in rural areas, it’s their only freshwater source. Groundwater gets polluted when contaminants—from pesticides and fertilizers to waste leached from landfills and septic systems—make their way into an aquifer, rendering it unsafe for human use. Ridding groundwater of contaminants can be difficult to impossible, as well as costly. Once polluted, an aquifer may be unusable for decades, or even thousands of years. Groundwater can also spread contamination far from the original polluting source as it seeps into streams, lakes, and oceans.

Surface water pollution

Covering about 70 percent of the earth, surface water is what fills our oceans, lakes, rivers, and all those other blue bits on the world map. Surface water from freshwater sources (that is, from sources other than the ocean) accounts for more than 60 percent of the water delivered to American homes. But a significant pool of that water is in peril. According to the most recent surveys on national water quality from the U.S. Environmental Protection Agency, nearly half of our rivers and streams and more than one-third of our lakes are polluted and unfit for swimming, fishing, and drinking. Nutrient pollution, which includes nitrates and phosphates, is the leading type of contamination in these freshwater sources. While plants and animals need these nutrients to grow, they have become a major pollutant due to farm waste and fertilizer runoff. Municipal and industrial waste discharges contribute their fair share of toxins as well. There’s also all the random junk that industry and individuals dump directly into waterways.

Ocean water pollution

Eighty percent of ocean pollution (also called marine pollution) originates on land—whether along the coast or far inland. Contaminants such as chemicals, nutrients, and heavy metals are carried from farms, factories, and cities by streams and rivers into our bays and estuaries; from there they travel out to sea. Meanwhile, marine debris— particularly plastic —is blown in by the wind or washed in via storm drains and sewers. Our seas are also sometimes spoiled by oil spills and leaks—big and small—and are consistently soaking up carbon pollution from the air. The ocean absorbs as much as a quarter of man-made carbon emissions .

On human health

To put it bluntly: Water pollution kills. In fact, it caused 1.8 million deaths in 2015, according to a study published in The Lancet . Contaminated water can also make you ill. Every year, unsafe water sickens about 1 billion people. And low-income communities are disproportionately at risk because their homes are often closest to the most polluting industries.

Waterborne pathogens, in the form of disease-causing bacteria and viruses from human and animal waste, are a major cause of illness from contaminated drinking water . Diseases spread by unsafe water include cholera, giardia, and typhoid. Even in wealthy nations, accidental or illegal releases from sewage treatment facilities, as well as runoff from farms and urban areas, contribute harmful pathogens to waterways. Thousands of people across the United States are sickened every year by Legionnaires’ disease (a severe form of pneumonia contracted from water sources like cooling towers and piped water), with cases cropping up from California’s Disneyland to Manhattan’s Upper East Side.

water pollution project introduction

A woman using bottled water to wash her three-week-old son at their home in Flint, Michigan

Todd McInturf/The Detroit News/AP

Meanwhile, the plight of residents in Flint, Michigan —where cost-cutting measures and aging water infrastructure created a lead contamination crisis—offers a stark look at how dangerous chemical and other industrial pollutants in our water can be. The problem goes far beyond Flint and involves much more than lead, as a wide range of chemical pollutants—from heavy metals such as arsenic and mercury to pesticides and nitrate fertilizers —are getting into our water supplies. Once they’re ingested, these toxins can cause a host of health issues, from cancer to hormone disruption to altered brain function. Children and pregnant women are particularly at risk.

Even swimming can pose a risk. Every year, 3.5 million Americans contract health issues such as skin rashes, pinkeye, respiratory infections, and hepatitis from sewage-laden coastal waters, according to EPA estimates.

On the environment

In order to thrive, healthy ecosystems rely on a complex web of animals, plants, bacteria, and fungi—all of which interact, directly or indirectly, with each other. Harm to any of these organisms can create a chain effect, imperiling entire aquatic environments.

When water pollution causes an algal bloom in a lake or marine environment, the proliferation of newly introduced nutrients stimulates plant and algae growth, which in turn reduces oxygen levels in the water. This dearth of oxygen, known as eutrophication , suffocates plants and animals and can create “dead zones,” where waters are essentially devoid of life. In certain cases, these harmful algal blooms can also produce neurotoxins that affect wildlife, from whales to sea turtles.

Chemicals and heavy metals from industrial and municipal wastewater contaminate waterways as well. These contaminants are toxic to aquatic life—most often reducing an organism’s life span and ability to reproduce—and make their way up the food chain as predator eats prey. That’s how tuna and other big fish accumulate high quantities of toxins, such as mercury.

Marine ecosystems are also threatened by marine debris , which can strangle, suffocate, and starve animals. Much of this solid debris, such as plastic bags and soda cans, gets swept into sewers and storm drains and eventually out to sea, turning our oceans into trash soup and sometimes consolidating to form floating garbage patches. Discarded fishing gear and other types of debris are responsible for harming more than 200 different species of marine life.

Meanwhile, ocean acidification is making it tougher for shellfish and coral to survive. Though they absorb about a quarter of the carbon pollution created each year by burning fossil fuels, oceans are becoming more acidic. This process makes it harder for shellfish and other species to build shells and may impact the nervous systems of sharks, clownfish, and other marine life.

With your actions

We’re all accountable to some degree for today’s water pollution problem. Fortunately, there are some simple ways you can prevent water contamination or at least limit your contribution to it:

  • Learn about the unique qualities of water where you live . Where does your water come from? Is the wastewater from your home treated? Where does stormwater flow to? Is your area in a drought? Start building a picture of the situation so you can discover where your actions will have the most impact—and see if your neighbors would be interested in joining in!
  • Reduce your plastic consumption and reuse or recycle plastic when you can.
  • Properly dispose of chemical cleaners, oils, and nonbiodegradable items to keep them from going down the drain.
  • Maintain your car so it doesn’t leak oil, antifreeze, or coolant.
  • If you have a yard, consider landscaping that reduces runoff and avoid applying pesticides and herbicides .
  • Don’t flush your old medications! Dispose of them in the trash to prevent them from entering local waterways.
  • Be mindful of anything you pour into storm sewers, since that waste often won’t be treated before being released into local waterways. If you notice a storm sewer blocked by litter, clean it up to keep that trash out of the water. (You’ll also help prevent troublesome street floods in a heavy storm.)
  • If you have a pup, be sure to pick up its poop .

With your voice

One of the most effective ways to stand up for our waters is to speak out in support of the Clean Water Act, which has helped hold polluters accountable for five decades—despite attempts by destructive industries to gut its authority. But we also need regulations that keep pace with modern-day challenges, including microplastics, PFAS , pharmaceuticals, and other contaminants our wastewater treatment plants weren’t built to handle, not to mention polluted water that’s dumped untreated.

Tell the federal government, the U.S. Army Corps of Engineers, and your local elected officials that you support water protections and investments in infrastructure, like wastewater treatment, lead-pipe removal programs, and stormwater-abating green infrastructure. Also, learn how you and those around you can get involved in the policymaking process . Our public waterways serve every one of us. We should all have a say in how they’re protected.

This story was originally published on May 14, 2018, and has been updated with new information and links.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Related Stories

water pollution project introduction

How to Become a Community Scientist

water pollution project introduction

“Forever Chemicals” Called PFAS Show Up in Your Food, Clothes, and Home

water pollution project introduction

How to Start Saving the Planet in 100 Days: the Joe Biden Edition

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

  • Random article
  • Teaching guide
  • Privacy & cookies

Photo of polluted stormwater draining into a creek from an overflow

Water pollution: an introduction

by Chris Woodford . Last updated: October 1, 2023.

O ver two thirds of Earth's surface is covered by water ; less than a third is taken up by land. As Earth's population continues to grow, people are putting ever-increasing pressure on the planet's water resources. In a sense, our oceans, rivers , and other inland waters are being "squeezed" by human activities—not so they take up less room, but so their quality is reduced. Poorer water quality means water pollution .

We know that pollution is a human problem because it is a relatively recent development in the planet's history: before the 19th century Industrial Revolution, people lived more in harmony with their immediate environment. As industrialization has spread around the globe, so the problem of pollution has spread with it. When Earth's population was much smaller, no one believed pollution would ever present a serious problem. It was once popularly believed that the oceans were far too big to pollute. Today, with around 7 billion people on the planet, it has become apparent that there are limits. Pollution is one of the signs that humans have exceeded those limits.

Photo: Stormwater pollution entering a river from a drain. Photo by Peter C Van Metre courtesy of US Geological Survey .

What is water pollution?

Water pollution can be defined in many ways. Usually, it means one or more substances have built up in water to such an extent that they cause problems for animals or people. Oceans, lakes, rivers, and other inland waters can naturally clean up a certain amount of pollution by dispersing it harmlessly. If you poured a cup of black ink into a river, the ink would quickly disappear into the river's much larger volume of clean water. The ink would still be there in the river, but in such a low concentration that you would not be able to see it. At such low levels, the chemicals in the ink probably would not present any real problem. However, if you poured gallons of ink into a river every few seconds through a pipe, the river would quickly turn black. The chemicals in the ink could very quickly have an effect on the quality of the water. This, in turn, could affect the health of all the plants, animals, and humans whose lives depend on the river.

Photo: Pollution means adding substances to the environment that don't belong there—like the air pollution from this smokestack. Pollution is not always as obvious as this, however.

Thus, water pollution is all about quantities : how much of a polluting substance is released and how big a volume of water it is released into. A small quantity of a toxic chemical may have little impact if it is spilled into the ocean from a ship. But the same amount of the same chemical can have a much bigger impact pumped into a lake or river, where there is less clean water to disperse it.

"The introduction by man, directly or indirectly, of substances or energy into the marine environment (including estuaries) resulting in such deleterious effects as harm to living resources, hazards to human health, hindrance to marine activities, including fishing, impairment of quality for use of sea water and reduction of amenities." [1]

What are the main types of water pollution?

When we think of Earth's water resources, we think of huge oceans, lakes, and rivers. Water resources like these are called surface waters . The most obvious type of water pollution affects surface waters. For example, a spill from an oil tanker creates an oil slick that can affect a vast area of the ocean.

Photo of detergent pollution in a creek

Photo: Detergent pollution entering a river—an example of surface water pollution. Photo courtesy of US Fish & Wildlife Service Photo Library.

Not all of Earth's water sits on its surface, however. A great deal of water is held in underground rock structures known as aquifers, which we cannot see and seldom think about. Water stored underground in aquifers is known as groundwater . Aquifers feed our rivers and supply much of our drinking water. They too can become polluted, for example, when weed killers used in people's gardens drain into the ground. Groundwater pollution is much less obvious than surface-water pollution, but is no less of a problem. In 1996, a study in Iowa in the United States found that over half the state's groundwater wells were contaminated with weed killers. You might think things would have improved since then, but, two decades on, all that's really changed is the name of the chemicals we're using. Today, numerous scientific studies are still finding weed killers in groundwater in worrying quantities: a 2012 study discovered glyphosate in 41 percent of 140 groundwater samples from Catalonia, Spain; scientific opinion differs on whether this is safe or not. [2]

Surface waters and groundwater are the two types of water resources that pollution affects. There are also two different ways in which pollution can occur. If pollution comes from a single location, such as a discharge pipe attached to a factory, it is known as point-source pollution . Other examples of point source pollution include an oil spill from a tanker, a discharge from a smoke stack (factory chimney), or someone pouring oil from their car down a drain. A great deal of water pollution happens not from one single source but from many different scattered sources. This is called nonpoint-source pollution .

When point-source pollution enters the environment, the place most affected is usually the area immediately around the source. For example, when a tanker accident occurs, the oil slick is concentrated around the tanker itself and, in the right ocean conditions, the pollution disperses the further away from the tanker you go. This is less likely to happen with nonpoint source pollution which, by definition, enters the environment from many different places at once.

Sometimes pollution that enters the environment in one place has an effect hundreds or even thousands of miles away. This is known as transboundary pollution . One example is the way radioactive waste travels through the oceans from nuclear reprocessing plants in England and France to nearby countries such as Ireland and Norway.

How do we know when water is polluted?

Some forms of water pollution are very obvious: everyone has seen TV news footage of oil slicks filmed from helicopters flying overhead. Water pollution is usually less obvious and much harder to detect than this. But how can we measure water pollution when we cannot see it? How do we even know it's there?

There are two main ways of measuring the quality of water. One is to take samples of the water and measure the concentrations of different chemicals that it contains. If the chemicals are dangerous or the concentrations are too great, we can regard the water as polluted. Measurements like this are known as chemical indicators of water quality. Another way to measure water quality involves examining the fish, insects, and other invertebrates that the water will support. If many different types of creatures can live in a river, the quality is likely to be very good; if the river supports no fish life at all, the quality is obviously much poorer. Measurements like this are called biological indicators of water quality.

What are the causes of water pollution?

Most water pollution doesn't begin in the water itself. Take the oceans: around 80 percent of ocean pollution enters our seas from the land. [16] Virtually any human activity can have an effect on the quality of our water environment. When farmers fertilize the fields, the chemicals they use are gradually washed by rain into the groundwater or surface waters nearby. Sometimes the causes of water pollution are quite surprising. Chemicals released by smokestacks (chimneys) can enter the atmosphere and then fall back to earth as rain, entering seas, rivers, and lakes and causing water pollution. That's called atmospheric deposition . Water pollution has many different causes and this is one of the reasons why it is such a difficult problem to solve.

With billions of people on the planet, disposing of sewage waste is a major problem. According to 2017 figures from the World Health Organization, some 2 billion people (about a quarter of the world's population) don't have access to safe drinking water or the most basic sanitation, 3.4 billion (60 people of the population) lack "safely managed" sanitation (unshared, with waste properly treated). Although there have been great improvements in securing access to clean water, relatively little, genuine progress has been made on improving global sanitation in the last decade. [20] Sewage disposal affects people's immediate environments and leads to water-related illnesses such as diarrhea that kills 525,000 children under five each year. [3] (Back in 2002, the World Health Organization estimated that water-related diseases could kill as many as 135 million people by 2020; in 2019, the WHO was still estimating the annual death toll from poor water and sanitation at over 800,000 people a year.) In developed countries, most people have flush toilets that take sewage waste quickly and hygienically away from their homes.

Yet the problem of sewage disposal does not end there. When you flush the toilet, the waste has to go somewhere and, even after it leaves the sewage treatment works, there is still waste to dispose of. Sometimes sewage waste is pumped untreated into the sea. Until the early 1990s, around 5 million tons of sewage was dumped by barge from New York City each year. [4] According to 2002 figures from the UK government's Department for the Environment, Food, and Rural Affairs (DEFRA), the sewers of Britain collect around 11 billion liters of waste water every day; there are still 31,000 sewage overflow pipes through which, in certain circumstances, such as heavy storms, raw sewage is pumped untreated into the sea. [5] The New River that crosses the border from Mexico into California once carried with it 20–25 million gallons (76–95 million liters) of raw sewage each day; a new waste water plant on the US-Mexico border, completed in 2007, substantially solved that problem. [6] Unfortunately, even in some of the richest nations, the practice of dumping sewage into the sea continues. In early 2012, it was reported that the tiny island of Guernsey (between Britain and France) has decided to continue dumping 16,000 tons of raw sewage into the sea each day.

In theory, sewage is a completely natural substance that should be broken down harmlessly in the environment: 90 percent of sewage is water. [7] In practice, sewage contains all kinds of other chemicals, from the pharmaceutical drugs people take to the paper , plastic , and other wastes they flush down their toilets. When people are sick with viruses, the sewage they produce carries those viruses into the environment. It is possible to catch illnesses such as hepatitis, typhoid, and cholera from river and sea water.

Photo: Nutrients make crops grow, but cause pollution when they seep into rivers and other watercourses. Photo courtesy of US Department of Agriculture (Flickr) .

Suitably treated and used in moderate quantities, sewage can be a fertilizer: it returns important nutrients to the environment, such as nitrogen and phosphorus, which plants and animals need for growth. The trouble is, sewage is often released in much greater quantities than the natural environment can cope with. Chemical fertilizers used by farmers also add nutrients to the soil, which drain into rivers and seas and add to the fertilizing effect of the sewage. Together, sewage and fertilizers can cause a massive increase in the growth of algae or plankton that overwhelms huge areas of oceans, lakes, or rivers. This is known as a harmful algal bloom (also known as an HAB or red tide, because it can turn the water red). It is harmful because it removes oxygen from the water that kills other forms of life, leading to what is known as a dead zone . The Gulf of Mexico has one of the world's most spectacular dead zones. Each summer, according to studies by the NOAA , it typically grows to an area of around 5500–6500 square miles (14,000–16,800 square kilometers), which is about the same size as the state of Connecticut. [21]

Waste water

A few statistics illustrate the scale of the problem that waste water (chemicals washed down drains and discharged from factories) can cause. Around half of all ocean pollution is caused by sewage and waste water. Each year, the world generates perhaps 5–10 billion tons of industrial waste, much of which is pumped untreated into rivers, oceans, and other waterways. [8] In the United States alone, around 400,000 factories take clean water from rivers, and many pump polluted waters back in their place. However, there have been major improvements in waste water treatment recently. Since 1970, in the United States, the Environmental Protection Agency (EPA) has invested about $70 billion in improving water treatment plants that, as of 2021, serve around 90 percent of the US population (compared to just 69 percent in 1972). However, another $271 billion is still needed to update and upgrade the system. [15]

Factories are point sources of water pollution, but quite a lot of water is polluted by ordinary people from nonpoint sources; this is how ordinary water becomes waste water in the first place. Virtually everyone pours chemicals of one sort or another down their drains or toilets. Even detergents used in washing machines and dishwashers eventually end up in our rivers and oceans. So do the pesticides we use on our gardens. A lot of toxic pollution also enters waste water from highway runoff . Highways are typically covered with a cocktail of toxic chemicals—everything from spilled fuel and brake fluids to bits of worn tires (themselves made from chemical additives) and exhaust emissions. When it rains, these chemicals wash into drains and rivers. It is not unusual for heavy summer rainstorms to wash toxic chemicals into rivers in such concentrations that they kill large numbers of fish overnight. It has been estimated that, in one year, the highway runoff from a single large city leaks as much oil into our water environment as a typical tanker spill. Some highway runoff runs away into drains; others can pollute groundwater or accumulate in the land next to a road, making it increasingly toxic as the years go by.

Chemical waste

Detergents are relatively mild substances. At the opposite end of the spectrum are highly toxic chemicals such as polychlorinated biphenyls (PCBs) . They were once widely used to manufacture electronic circuit boards , but their harmful effects have now been recognized and their use is highly restricted in many countries. Nevertheless, an estimated half million tons of PCBs were discharged into the environment during the 20th century. [9] In a classic example of transboundary pollution, traces of PCBs have even been found in birds and fish in the Arctic. They were carried there through the oceans, thousands of miles from where they originally entered the environment. Although PCBs are widely banned, their effects will be felt for many decades because they last a long time in the environment without breaking down.

Another kind of toxic pollution comes from heavy metals , such as lead, cadmium, and mercury. Lead was once commonly used in gasoline (petrol), though its use is now restricted in some countries. Mercury and cadmium are still used in batteries (though some brands now use other metals instead). Until recently, a highly toxic chemical called tributyltin (TBT) was used in paints to protect boats from the ravaging effects of the oceans. Ironically, however, TBT was gradually recognized as a pollutant: boats painted with it were doing as much damage to the oceans as the oceans were doing to the boats.

The best known example of heavy metal pollution in the oceans took place in 1938 when a Japanese factory discharged a significant amount of mercury metal into Minamata Bay, contaminating the fish stocks there. It took a decade for the problem to come to light. By that time, many local people had eaten the fish and around 2000 were poisoned. Hundreds of people were left dead or disabled. [10]

Radioactive waste

People view radioactive waste with great alarm—and for good reason. At high enough concentrations it can kill; in lower concentrations it can cause cancers and other illnesses. The biggest sources of radioactive pollution in Europe are two factories that reprocess waste fuel from nuclear power plants : Sellafield on the north-west coast of Britain and Cap La Hague on the north coast of France. Both discharge radioactive waste water into the sea, which ocean currents then carry around the world. Countries such as Norway, which lie downstream from Britain, receive significant doses of radioactive pollution from Sellafield. [19] The Norwegian government has repeatedly complained that Sellafield has increased radiation levels along its coast by 6–10 times. Both the Irish and Norwegian governments continue to press for the plant's closure. [11]

Oil pollution

Photo: Oil-tanker spills are the most spectacular forms of pollution and the ones that catch public attention, but only a fraction of all water pollution happens this way. Photo by Lamar Gore courtesy of US Fish & Wildlife Service Photo Library and US National Archive .

When we think of ocean pollution, huge black oil slicks often spring to mind, yet these spectacular accidents represent only a tiny fraction of all the pollution entering our oceans. Even considering oil by itself, tanker spills are not as significant as they might seem: only 12 percent of the oil that enters the oceans comes from tanker accidents; over 70 percent of oil pollution at sea comes from routine shipping and from the oil people pour down drains on land. [12] However, what makes tanker spills so destructive is the sheer quantity of oil they release at once — in other words, the concentration of oil they produce in one very localized part of the marine environment. The biggest oil spill in recent years (and the biggest ever spill in US waters) occurred when the tanker Exxon Valdez broke up in Prince William Sound in Alaska in 1989. Around 12 million gallons (44 million liters) of oil were released into the pristine wilderness—enough to fill your living room 800 times over! Estimates of the marine animals killed in the spill vary from approximately 1000 sea otters and 34,000 birds to as many as 2800 sea otters and 250,000 sea birds. Several billion salmon and herring eggs are also believed to have been destroyed. [13]

If you've ever taken part in a community beach clean, you'll know that plastic is far and away the most common substance that washes up with the waves. There are three reasons for this: plastic is one of the most common materials, used for making virtually every kind of manufactured object from clothing to automobile parts; plastic is light and floats easily so it can travel enormous distances across the oceans; most plastics are not biodegradable (they do not break down naturally in the environment), which means that things like plastic bottle tops can survive in the marine environment for a long time. (A plastic bottle can survive an estimated 450 years in the ocean and plastic fishing line can last up to 600 years.)

While plastics are not toxic in quite the same way as poisonous chemicals, they nevertheless present a major hazard to seabirds, fish, and other marine creatures. For example, plastic fishing lines and other debris can strangle or choke fish. (This is sometimes called ghost fishing .) About half of all the world's seabird species are known to have eaten plastic residues. In one study of 450 shearwaters in the North Pacific, over 80 percent of the birds were found to contain plastic residues in their stomachs. In the early 1990s, marine scientist Tim Benton collected debris from a 2km (1.5 mile) length of beach in the remote Pitcairn islands in the South Pacific. His study recorded approximately a thousand pieces of garbage including 268 pieces of plastic, 71 plastic bottles, and two dolls heads. [14]

Alien species

Most people's idea of water pollution involves things like sewage, toxic metals, or oil slicks, but pollution can be biological as well as chemical. In some parts of the world, alien species are a major problem. Alien species (sometimes known as invasive species ) are animals or plants from one region that have been introduced into a different ecosystem where they do not belong. Outside their normal environment, they have no natural predators, so they rapidly run wild, crowding out the usual animals or plants that thrive there. Common examples of alien species include zebra mussels in the Great Lakes of the USA, which were carried there from Europe by ballast water (waste water flushed from ships ). The Mediterranean Sea has been invaded by a kind of alien algae called Caulerpa taxifolia . In the Black Sea, an alien jellyfish called Mnemiopsis leidyi reduced fish stocks by 90 percent after arriving in ballast water. In San Francisco Bay, Asian clams called Potamocorbula amurensis, also introduced by ballast water, have dramatically altered the ecosystem. In 1999, Cornell University's David Pimentel estimated that alien invaders like this cost the US economy $123 billion a year; in 2014, the European Commission put the cost to Europe at €12 billion a year and "growing all the time. [18]

Other forms of pollution

These are the most common forms of pollution—but by no means the only ones. Heat or thermal pollution from factories and power plants also causes problems in rivers. By raising the temperature, it reduces the amount of oxygen dissolved in the water, thus also reducing the level of aquatic life that the river can support. Another type of pollution involves the disruption of sediments (fine-grained powders) that flow from rivers into the sea. Dams built for hydroelectric power or water reservoirs can reduce the sediment flow. This reduces the formation of beaches, increases coastal erosion (the natural destruction of cliffs by the sea), and reduces the flow of nutrients from rivers into seas (potentially reducing coastal fish stocks). Increased sediments can also present a problem. During construction work, soil, rock, and other fine powders sometimes enters nearby rivers in large quantities, causing it to become turbid (muddy or silted). The extra sediment can block the gills of fish, effectively suffocating them. Construction firms often now take precautions to prevent this kind of pollution from happening.

What are the effects of water pollution?

Some people believe pollution is an inescapable result of human activity: they argue that if we want to have factories, cities, ships, cars, oil, and coastal resorts, some degree of pollution is almost certain to result. In other words, pollution is a necessary evil that people must put up with if they want to make progress. Fortunately, not everyone agrees with this view. One reason people have woken up to the problem of pollution is that it brings costs of its own that undermine any economic benefits that come about by polluting.

Take oil spills, for example. They can happen if tankers are too poorly built to survive accidents at sea. But the economic benefit of compromising on tanker quality brings an economic cost when an oil spill occurs. The oil can wash up on nearby beaches, devastate the ecosystem, and severely affect tourism. The main problem is that the people who bear the cost of the spill (typically a small coastal community) are not the people who caused the problem in the first place (the people who operate the tanker). Yet, arguably, everyone who puts gasoline (petrol) into their car—or uses almost any kind of petroleum-fueled transport—contributes to the problem in some way. So oil spills are a problem for everyone, not just people who live by the coast and tanker operates.

Sewage is another good example of how pollution can affect us all. Sewage discharged into coastal waters can wash up on beaches and cause a health hazard. People who bathe or surf in the water can fall ill if they swallow polluted water—yet sewage can have other harmful effects too: it can poison shellfish (such as cockles and mussels) that grow near the shore. People who eat poisoned shellfish risk suffering from an acute—and sometimes fatal—illness called paralytic shellfish poisoning. Shellfish is no longer caught along many shores because it is simply too polluted with sewage or toxic chemical wastes that have discharged from the land nearby.

Pollution matters because it harms the environment on which people depend. The environment is not something distant and separate from our lives. It's not a pretty shoreline hundreds of miles from our homes or a wilderness landscape that we see only on TV. The environment is everything that surrounds us that gives us life and health. Destroying the environment ultimately reduces the quality of our own lives—and that, most selfishly, is why pollution should matter to all of us.

How can we stop water pollution?

There is no easy way to solve water pollution; if there were, it wouldn't be so much of a problem. Broadly speaking, there are three different things that can help to tackle the problem—education, laws, and economics—and they work together as a team.

Making people aware of the problem is the first step to solving it. In the early 1990s, when surfers in Britain grew tired of catching illnesses from water polluted with sewage, they formed a group called Surfers Against Sewage to force governments and water companies to clean up their act. People who've grown tired of walking the world's polluted beaches often band together to organize community beach-cleaning sessions. Anglers who no longer catch so many fish have campaigned for tougher penalties against factories that pour pollution into our rivers. Greater public awareness can make a positive difference.

One of the biggest problems with water pollution is its transboundary nature. Many rivers cross countries, while seas span whole continents. Pollution discharged by factories in one country with poor environmental standards can cause problems in neighboring nations, even when they have tougher laws and higher standards. Environmental laws can make it tougher for people to pollute, but to be really effective they have to operate across national and international borders. This is why we have international laws governing the oceans, such as the 1982 UN Convention on the Law of the Sea (signed by over 120 nations), the 1972 London (Dumping) Convention , the 1978 MARPOL International Convention for the Prevention of Pollution from Ships , and the 1998 OSPAR Convention for the Protection of the Marine Environment of the North East Atlantic . The European Union has water-protection laws (known as directives) that apply to all of its member states. They include the 1976 Bathing Water Directive (updated 2006), which seeks to ensure the quality of the waters that people use for recreation. Most countries also have their own water pollution laws. In the United States, for example, there is the 1972 Clean Water Act and the 1974 Safe Drinking Water Act .

Most environmental experts agree that the best way to tackle pollution is through something called the polluter pays principle . This means that whoever causes pollution should have to pay to clean it up, one way or another. Polluter pays can operate in all kinds of ways. It could mean that tanker owners should have to take out insurance that covers the cost of oil spill cleanups, for example. It could also mean that shoppers should have to pay for their plastic grocery bags, as is now common in Ireland, to encourage recycling and minimize waste. Or it could mean that factories that use rivers must have their water inlet pipes downstream of their effluent outflow pipes, so if they cause pollution they themselves are the first people to suffer. Ultimately, the polluter pays principle is designed to deter people from polluting by making it less expensive for them to behave in an environmentally responsible way.

Our clean future

Life is ultimately about choices—and so is pollution. We can live with sewage-strewn beaches, dead rivers, and fish that are too poisonous to eat. Or we can work together to keep the environment clean so the plants, animals, and people who depend on it remain healthy. We can take individual action to help reduce water pollution, for example, by using environmentally friendly detergents , not pouring oil down drains, reducing pesticides, and so on. We can take community action too, by helping out on beach cleans or litter picks to keep our rivers and seas that little bit cleaner. And we can take action as countries and continents to pass laws that will make pollution harder and the world less polluted. Working together, we can make pollution less of a problem—and the world a better place.

If you liked this article...

Find out more, on this site.

  • Air pollution (introduction)
  • Climate change and global warming
  • Environmentalism (introduction)
  • Land pollution
  • Organic food and farming

For older readers

For younger readers.

  • Earth Matters by Lynn Dicks et al. Dorling Kindersley, 2008: A more general guide to problems Earth faces, with each major biome explored separately. In case you're interested, I contributed the polar regions chapter. The book is mostly a simple read and probably suitable for 7–10 (and maybe 9–12).

Selected news articles

Water pollution videos, notes and references.

Text copyright © Chris Woodford 2006, 2022. All rights reserved. Full copyright notice and terms of use .

This article was originally written for the UK Rivers Network and first published on their website in April 2006. It is revised and updated every year.

Rate this page

Tell your friends, cite this page, more to explore on our website....

  • Get the book
  • Send feedback

Water Pollution

Water pollution is the contamination of water sources by substances which make the water unusable for drinking, cooking, cleaning, swimming, and other activities. Pollutants include chemicals, trash, bacteria, and parasites. All forms of pollution eventually make their way to water. Air pollution settles onto lakes and oceans. Land pollution can seep into an underground stream, then to a river, and finally to the ocean. Thus, waste dumped in a vacant lot can eventually pollute a water supply.

Water pollutants may cause disease or act as poisons. Bacteria and parasites in poorly treated sewage may enter drinking water supplies and cause digestive problems such as cholera and diarrhea. Hazardous chemicals, pesticides, and herbicides from industries, farms, homes and golf courses can cause acute toxicity and immediate death, or chronic toxicity that can lead to neurological problems or cancers. Many water pollutants enter our bodies when we use water for drinking and food preparation. The pollutants enter the digestive tract. From there, they can reach other organs in the body and cause various illnesses. Chemicals come in contact with the skin from washing clothes, or from swimming in polluted water and may lead to skin irritations. Hazardous chemicals in water systems can also affect the animals and plants which live there. Sometimes these organisms will survive with the chemicals in their systems, only to be eaten by humans who may then become mildly ill or develop stronger toxic symptoms. The animals and plants themselves may die or not reproduce properly.

Use less water: Clean, fresh water may seem plentiful, but there is a limited amount available on earth. Use water-saving devices on sinks, in toilets, and in showers. Take short showers instead of baths. Do not run the water constantly while brushing your teeth. Wash clothes when you have a full load of laundry. Only water your lawn and plants when absolutely necessary.

Avoid pouring chemicals down the drain: Use fewer chemicals and cleaners around the home. Not only will you cut down on indoor air pollution, but also on the amount of chemicals entering the water system. If necessary, use biodegradable cleaners. Do not pour oil or other chemicals into the drainage system on the street.

Have your water checked for lead contamination: Many homes have lead pipes or lead around connections on the pipes which carry water to their homes. Since this lead may enter your drinking water and cause medical problems in young children, you might want to have the water tested. If lead is present, installing a filter may solve the problem.

Do not pollute outdoor water sources: Do not pour oil or other chemicals into the drainage system on the street. A little oil can kill many plants and animals. Do not litter, especially near water. Litter may be eaten as food by animals and cause harm to them. Do not use pesticides on lawns, or use only organic ones. Use less fertilizer, also. All these can enter our water sources.

Enjoy water for eating, drinking, cleaning, swimming, etc. Just remember to use it carefully. Do not waste or pollute this limited precious resource.

News from the School

Harvard Chan School inaugural Day of Service draws hundreds of volunteers

Harvard Chan School inaugural Day of Service draws hundreds of volunteers

Alumni Weekend 2023 focuses on equity, justice in health care

Alumni Weekend 2023 focuses on equity, justice in health care

Confronting climate change from the factory, the classroom, and beyond

Confronting climate change from the factory, the classroom, and beyond

Professor and former political appointee reflects on research and public service

Professor and former political appointee reflects on research and public service

Talk to our experts

1800-120-456-456

Water Pollution and its Control

What is water pollution.

Two-thirds of our planet is made up of water which is as big as 1 octillion liters. 70 percent of the human body is made up of water. It is a universal solvent. It is the only substance that exists in all 3 forms of matter on this planet. Today, the United Nations have recognized water as a basic human right, besides considering it as an economic commodity. 

Pollution is the introduction of contamination into the environment . Water pollution is the presence of extreme levels of pollutants (hazards) in a water body, such that it is no longer suitable for regular human usages such as bathing, cooking, or drinking. 

Polluting water is commonly seen with the involvement of human activities such as throwing waste, industrial and agricultural effluents, chemical discharge, etc. This leads to the degradation of water quality and affects aquatic life. When humans or animals consume this water for thirst, the health effects caused are adverse to life. Only less than 0.3% of the freshwater of the earth is suitable for normal drinking. ‘Pure’ water form is thought to be water with the minimum amount of gases, minerals, and life. But for all practical purposes, it is generally thought to have the least amount of solutes. High-quality water is essential for drinking purposes, but for any other needs, water quality can be flexible.

The article encompasses the discussion of the effects and preventive steps to control water pollution.  

Sources of Water Pollution

Since we have developed an understanding of what is water pollution, let us look into the sources of water pollution. There are many sources of water pollution. Most of the freshwater is surface water. It can get contaminated by seepage of harmful chemicals from the surface. There are two major sources when seen from the origin of the contamination. One is the ‘point’ source pollution, which means that the source of the pollution originates from a specific place. The other is ‘nonpoint’ source pollution as contamination from diffuse options. Transboundary contamination means it will not be limited to a country but can affect other places as well. Other common causatives for water pollution include Urbanization, high use of Detergents,  insecticides and fertilizers , Deforestation. Even many social and religious ceremonies are key sources of water pollution. 

Let us look at a few other modern sources of water contamination with examples.  

Water Pollution: A Modern Epidemic

Most causes of water pollution originate from human activities and their waste products. The sources of water pollution are numerous, but some of the major pollutants in today’s modern scenario are as follows : 

Industrial Waste

Many regular industrial activities release enormous amounts of toxic chemicals such as lead and mercury. They spread to other living species when humans use this contaminated product for regular purposes. It also affects the biodiversity of the water body.

Sewage and Waste

Tonnes of sewage waste is dumped into water bodies. This not only causes pollution but also releases dangerous disease-causing pathogens.

Mining in today’s generation is key to the major lake and river pollution. This process brings out harmful chemicals that are buried deep under the earth’s surface. When this comes in contact with water, the effects are dangerous to any living creature.

Marine Dumping

The garbage generated every day is dumped into the seas and oceans going as far as to give rise to garbage islands. An easy step of throwing waste products only in the bin can reduce more than half of the water pollution levels.

Agricultural Activities

The use of chemical fertilizers, pesticides, and other runoffs during irrigation flows into the water bodies. These chemicals cause pollution to water bodies in a short span of time. 

Radioactive Wastes

After usage of radioactive materials for nuclear wagons or as an energy source, they are mostly dumped into water bodies or in glaciers that will immediately mix with water when the temperature rises. 

Urbanization and Population Growth

Cities are unable to meet the water demand of their growing population. This has caused contamination and loss of water due to overuse. 

Effects of Water Pollution

The most diverse effects of water pollution on humans is when it affects the health of people. Disruption of aquatic life is the primary effect of water pollution. Polluted water contains many disease-causing elements such as bacteria and viruses which trigger other harmful diseases, namely cholera, giardia, and typhoid. It can even lead to chronic conditions, including hormonal imbalances, hepatitis, altered brain function to cancer. A pregnant woman is especially prone to these water-borne diseases. Also, swimming in polluted water is a high risk as it can cause skin and eye allergies.

The environment is also disturbed as it slowly kills animals and plants’ life that is dependent on them for nourishment. It also supports the growth of harmful organisms that destroy the biodiversity of the water body. Certain algae growth reduces the level of oxygen in the water, killing everything in it. In some areas, pollution is so severe that it causes “dead zones” where there is no life. 

Minamata Incident

The 1932’s Minamata Incident is the worst record case in the history of water pollution. Methylmercury and its effluents started to flow from a factory in Japan. Methylmercury is one of the key sources of causing neurological disorders in human beings. The effects were initially not observable until seashells started to grasp these toxic chemicals into them. People and other local men started to consume these fishes, and the ill effects were soon prominent. 

Animals such as cats and dogs were the first ones to suffer the ill effects of this chemical. The term ‘dancing cat disease’ was coined from this incident, referring to the sounds of cats before they convulse and die. The symptoms were worse, including loss of motor coordination, acute mercury poisoning, ataxia, and even damage to speech and hearing. Severely affected persons are recorded to have coma and paralysis, leading to demise.

The Japanese government and officials took 36 years to understand the seriousness of the incident and provided support funds to the victims. Soon the Japanese government also opened avenues to start protecting their water bodies and took proper measures for the prevention of water pollution. 

Pollution of The Ganges

The 6th most polluted river in the world is India’s Ganges (Ganga). Cremating dead bodies of humans along with other religious practices, quickly developed water contaminated into the river. This river is also the major cause of cholera and typhoid. 

Even the fauna of this river has been adversely affected, and notable ones include the Ganges River Dolphin and Ganges River Shark. Nearly 1000 children die each year due to water pollution in India . Currently, there are a few steps taken to drive away from this level and address these issues properly.

Control Measures of Water Pollution

Since we have understood the concept of water pollution, let us look into some of the actions taken to control water pollution. Prevention and control of water pollution could be done in so many ways. To start off, it is to plant more trees around water bodies as they naturally help to assimilate and recycle the pollutants.  Some important points are summarized below.

There is a plant known as ‘Water Hyacinth’ that absorbs dissolved toxic substances like cadmium and mercury from water bodies, thus actively removing pollutants from water. 

It is important to dispose-off waste carefully and not to dump it directly into water bodies, without proper waste treatment. 

Industries should treat their wastes carefully before disposing of chemicals and other materials into water bodies directly. Sewage treatment plants and wastewater treatment plants in industries are established to treat the water used so it can be safely mixed into the river streams. It also enables water recycling.

Using natural fertilizers and pesticides as substitutes for chemical ones is good for plants and water.  

Chemical processes such as coagulation, ion exchange method, reverse osmosis, etc. will greatly reduce the level of water pollution. 

Lastly, it is better to reduce the consumption of water in our daily activities and reuse water whenever possible to reduce the overall level of pollution.

In conclusion of the article, it can be said that we have learned about what is water pollution and the control measures taken to reduce it. Case studies of water pollution are also mentioned in the article.

FAQs on Water Pollution and its Control

1. Give the water pollution definition.

Water pollution is an adverse result of contaminated substances and other toxic elements entering water bodies such as rivers, streams, ponds, etc.

2. State water pollution causes and effects.

The common causes of water pollution include sewage disposal, chemical release from industries, agricultural runoff, etc. The effects of these causes include aquatic life disturbance, neurological and psychological errors in human beings, loss of flora and fauna, etc.

3. Name a few diseases caused due to water pollution.

Typhoid, Cholera, Jaundice, Hepatitis, Dysentery, Polio, Trachoma, are some of the water-borne diseases caused due to water pollution.

4. What will be the future effects of water pollution?

Climate change, water scarcity, global warming, ozone layer depletion, loss of genetic pool, are some of the future effects of water pollution, if not controlled.

5. What are the standard measures to control water pollution?

Effluent sewage treatment, proper incineration, reducing the use of chemical fertilizers, reusing the water, if possible, are some of the simple and standard measures to control water pollution.

Biology • Class 12

IMAGES

  1. PPT

    water pollution project introduction

  2. Project File on Water Pollution by Slideshow (Science)(Social Science

    water pollution project introduction

  3. Water Pollution E.V.S PROJECT

    water pollution project introduction

  4. (DOC) Water pollution: an introduction

    water pollution project introduction

  5. Causes of Water Pollution project model

    water pollution project introduction

  6. Water pollution ppt

    water pollution project introduction

VIDEO

  1. water pollution project

  2. Water pollution project made by "18 tetori" students

  3. water pollution🏞🏞and air 🌪🌪pollution project work for school 🏫 🚸🚸🚸

  4. Water pollution project made by "18 tetori" students

  5. Water pollution project made by "18 tetori" students

  6. Water pollution project made by "18 tetori" students

COMMENTS

  1. What Is Atmospheric Pollution?

    Atmospheric pollution, or air pollution, is the introduction of harmful particulates, biological molecules or chemical molecules into the Earth’s atmosphere. Air pollution can lead to disease and death in humans.

  2. What Is a Introduction in a Science Project?

    One of the key purposes of the introduction to a science project is setting forth or outlining the purpose of the project in a clear, concise manner. The introduction summarizes how the science project is to work or proceed from start to fi...

  3. How Do You Write an Introduction to a Project?

    An introduction to a project, paper or verbal presentation engages an audience and provides a concise preview that includes the background of the project, clarifies the points examined and explains the conclusions. An introduction sometimes...

  4. Water Pollution

    Water pollution is a broad term that describes any kind of contamination of bodies of water such as rivers, lakes or wetlands with substances

  5. Water Pollution Definition

    Water pollution occurs when harmful substances—often chemicals or microorganisms—contaminate a stream, river, lake, ocean, aquifer, or other

  6. Water pollution: An introduction to causes, effects, solutions

    Factories are point sources of water pollution, but quite a lot of water is polluted by ordinary people from nonpoint sources; this is how

  7. Water pollution

    Water pollution (or aquatic pollution) is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses

  8. Water pollution

    water pollution, the release of substances into subsurface groundwater or into lakes, streams, rivers, estuaries, and oceans to the point where the

  9. Water Pollution

    Pollutants include chemicals, trash, bacteria, and parasites. All forms of pollution eventually make their way to water. Air pollution settles onto lakes and

  10. CHAPTER I INTRODUCTION 1.1Background The issue of water

    Consumption of polluted water in rivers and lakes was a serious problem in East. Asian countries (Hallock., 2002). 1.2 Water Pollution. Page 2. Water pollution

  11. What Is Water Pollution?

    Using the picture, list sources of pollution (such as sewage pollution) that can pollute surface water or groundwater. Page 2. Types and Sources of Water

  12. Water Pollution

    Water pollution is defined as any chemical or physical changes in water detrimental to living organizations. From: Cross-Border Resource Management (Third

  13. (PDF) WATER POLLUTION-SOURCES,EFFECTS AND CONTROL

    ... Water pollution also harms aquatic species, as the colored dyes reflect sunlight back into the water, blocking its penetration (Gupta 2016)

  14. Water Pollution and its Control

    Water pollution is the presence of extreme levels of pollutants (hazards) in a water body, such that it is no longer suitable for regular human usages such as