• Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Assignment Operators in Programming

  • Binary Operators in Programming
  • Operator Associativity in Programming
  • C++ Assignment Operator Overloading
  • What are Operators in Programming?
  • Assignment Operators In C++
  • Bitwise AND operator in Programming
  • Increment and Decrement Operators in Programming
  • Types of Operators in Programming
  • Logical AND operator in Programming
  • Modulus Operator in Programming
  • Solidity - Assignment Operators
  • Augmented Assignment Operators in Python
  • Pre Increment and Post Increment Operator in Programming
  • Right Shift Operator (>>) in Programming
  • JavaScript Assignment Operators
  • Move Assignment Operator in C++ 11
  • Assignment Operators in Python
  • Assignment Operators in C
  • Subtraction Assignment( -=) Operator in Javascript

Assignment operators in programming are symbols used to assign values to variables. They offer shorthand notations for performing arithmetic operations and updating variable values in a single step. These operators are fundamental in most programming languages and help streamline code while improving readability.

Table of Content

What are Assignment Operators?

  • Types of Assignment Operators
  • Assignment Operators in C++
  • Assignment Operators in Java
  • Assignment Operators in C#
  • Assignment Operators in Javascript
  • Application of Assignment Operators

Assignment operators are used in programming to  assign values  to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign ( = ), which assigns the value on the right side of the operator to the variable on the left side.

Types of Assignment Operators:

  • Simple Assignment Operator ( = )
  • Addition Assignment Operator ( += )
  • Subtraction Assignment Operator ( -= )
  • Multiplication Assignment Operator ( *= )
  • Division Assignment Operator ( /= )
  • Modulus Assignment Operator ( %= )

Below is a table summarizing common assignment operators along with their symbols, description, and examples:

Assignment Operators in C:

Here are the implementation of Assignment Operator in C language:

Assignment Operators in C++:

Here are the implementation of Assignment Operator in C++ language:

Assignment Operators in Java:

Here are the implementation of Assignment Operator in java language:

Assignment Operators in Python:

Here are the implementation of Assignment Operator in python language:

Assignment Operators in C#:

Here are the implementation of Assignment Operator in C# language:

Assignment Operators in Javascript:

Here are the implementation of Assignment Operator in javascript language:

Application of Assignment Operators:

  • Variable Initialization : Setting initial values to variables during declaration.
  • Mathematical Operations : Combining arithmetic operations with assignment to update variable values.
  • Loop Control : Updating loop variables to control loop iterations.
  • Conditional Statements : Assigning different values based on conditions in conditional statements.
  • Function Return Values : Storing the return values of functions in variables.
  • Data Manipulation : Assigning values received from user input or retrieved from databases to variables.

Conclusion:

In conclusion, assignment operators in programming are essential tools for assigning values to variables and performing operations in a concise and efficient manner. They allow programmers to manipulate data and control the flow of their programs effectively. Understanding and using assignment operators correctly is fundamental to writing clear, efficient, and maintainable code in various programming languages.

Please Login to comment...

Similar reads.

  • Programming

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

cppreference.com

Assignment operators.

Assignment and compound assignment operators are binary operators that modify the variable to their left using the value to their right.

[ edit ] Simple assignment

The simple assignment operator expressions have the form

Assignment performs implicit conversion from the value of rhs to the type of lhs and then replaces the value in the object designated by lhs with the converted value of rhs .

Assignment also returns the same value as what was stored in lhs (so that expressions such as a = b = c are possible). The value category of the assignment operator is non-lvalue (so that expressions such as ( a = b ) = c are invalid).

rhs and lhs must satisfy one of the following:

  • both lhs and rhs have compatible struct or union type, or..
  • rhs must be implicitly convertible to lhs , which implies
  • both lhs and rhs have arithmetic types , in which case lhs may be volatile -qualified or atomic (since C11)
  • both lhs and rhs have pointer to compatible (ignoring qualifiers) types, or one of the pointers is a pointer to void, and the conversion would not add qualifiers to the pointed-to type. lhs may be volatile or restrict (since C99) -qualified or atomic (since C11) .
  • lhs is a (possibly qualified or atomic (since C11) ) pointer and rhs is a null pointer constant such as NULL or a nullptr_t value (since C23)

[ edit ] Notes

If rhs and lhs overlap in memory (e.g. they are members of the same union), the behavior is undefined unless the overlap is exact and the types are compatible .

Although arrays are not assignable, an array wrapped in a struct is assignable to another object of the same (or compatible) struct type.

The side effect of updating lhs is sequenced after the value computations, but not the side effects of lhs and rhs themselves and the evaluations of the operands are, as usual, unsequenced relative to each other (so the expressions such as i = ++ i ; are undefined)

Assignment strips extra range and precision from floating-point expressions (see FLT_EVAL_METHOD ).

In C++, assignment operators are lvalue expressions, not so in C.

[ edit ] Compound assignment

The compound assignment operator expressions have the form

The expression lhs @= rhs is exactly the same as lhs = lhs @ ( rhs ) , except that lhs is evaluated only once.

[ edit ] References

  • C17 standard (ISO/IEC 9899:2018):
  • 6.5.16 Assignment operators (p: 72-73)
  • C11 standard (ISO/IEC 9899:2011):
  • 6.5.16 Assignment operators (p: 101-104)
  • C99 standard (ISO/IEC 9899:1999):
  • 6.5.16 Assignment operators (p: 91-93)
  • C89/C90 standard (ISO/IEC 9899:1990):
  • 3.3.16 Assignment operators

[ edit ] See Also

Operator precedence

[ edit ] See also

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 19 August 2022, at 09:36.
  • This page has been accessed 58,085 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

CProgramming Tutorial

  • C Programming Tutorial
  • C - Overview
  • C - Features
  • C - History
  • C - Environment Setup
  • C - Program Structure
  • C - Hello World
  • C - Compilation Process
  • C - Comments
  • C - Keywords
  • C - Identifiers
  • C - User Input
  • C - Basic Syntax
  • C - Data Types
  • C - Variables
  • C - Integer Promotions
  • C - Type Conversion
  • C - Booleans
  • C - Constants
  • C - Literals
  • C - Escape sequences
  • C - Format Specifiers
  • C - Storage Classes
  • C - Operators
  • C - Arithmetic Operators
  • C - Relational Operators
  • C - Logical Operators
  • C - Bitwise Operators
  • C - Assignment Operators
  • C - Unary Operators
  • C - Increment and Decrement Operators
  • C - Ternary Operator
  • C - sizeof Operator
  • C - Operator Precedence
  • C - Misc Operators
  • C - Decision Making
  • C - if statement
  • C - if...else statement
  • C - nested if statements
  • C - switch statement
  • C - nested switch statements
  • C - While loop
  • C - For loop
  • C - Do...while loop
  • C - Nested loop
  • C - Infinite loop
  • C - Break Statement
  • C - Continue Statement
  • C - goto Statement
  • C - Functions
  • C - Main Functions
  • C - Function call by Value
  • C - Function call by reference
  • C - Nested Functions
  • C - Variadic Functions
  • C - User-Defined Functions
  • C - Callback Function
  • C - Return Statement
  • C - Recursion
  • C - Scope Rules
  • C - Static Variables
  • C - Global Variables
  • C - Properties of Array
  • C - Multi-Dimensional Arrays
  • C - Passing Arrays to Function
  • C - Return Array from Function
  • C - Variable Length Arrays
  • C - Pointers
  • C - Pointers and Arrays
  • C - Applications of Pointers
  • C - Pointer Arithmetics
  • C - Array of Pointers
  • C - Pointer to Pointer
  • C - Passing Pointers to Functions
  • C - Return Pointer from Functions
  • C - Function Pointers
  • C - Pointer to an Array
  • C - Pointers to Structures
  • C - Chain of Pointers
  • C - Pointer vs Array
  • C - Character Pointers and Functions
  • C - NULL Pointer
  • C - void Pointer
  • C - Dangling Pointers
  • C - Dereference Pointer
  • C - Near, Far and Huge Pointers
  • C - Initialization of Pointer Arrays
  • C - Pointers vs. Multi-dimensional Arrays
  • C - Strings
  • C - Array of Strings
  • C - Special Characters
  • C - Structures
  • C - Structures and Functions
  • C - Arrays of Structures
  • C - Self-Referential Structures
  • C - Nested Structures
  • C - Bit Fields
  • C - Typedef
  • C - Input & Output
  • C - File I/O
  • C - Preprocessors
  • C - Header Files
  • C - Type Casting
  • C - Error Handling
  • C - Variable Arguments
  • C - Memory Management
  • C - Command Line Arguments
  • C Programming Resources
  • C - Questions & Answers
  • C - Quick Guide
  • C - Useful Resources
  • C - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Assignment Operators in C

In C language, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable, or an expression.

The value to be assigned forms the right-hand operand, whereas the variable to be assigned should be the operand to the left of the " = " symbol, which is defined as a simple assignment operator in C.

In addition, C has several augmented assignment operators.

The following table lists the assignment operators supported by the C language −

Simple Assignment Operator (=)

The = operator is one of the most frequently used operators in C. As per the ANSI C standard, all the variables must be declared in the beginning. Variable declaration after the first processing statement is not allowed.

You can declare a variable to be assigned a value later in the code, or you can initialize it at the time of declaration.

You can use a literal, another variable, or an expression in the assignment statement.

Once a variable of a certain type is declared, it cannot be assigned a value of any other type. In such a case the C compiler reports a type mismatch error.

In C, the expressions that refer to a memory location are called "lvalue" expressions. A lvalue may appear as either the left-hand or right-hand side of an assignment.

On the other hand, the term rvalue refers to a data value that is stored at some address in memory. A rvalue is an expression that cannot have a value assigned to it which means an rvalue may appear on the right-hand side but not on the left-hand side of an assignment.

Variables are lvalues and so they may appear on the left-hand side of an assignment. Numeric literals are rvalues and so they may not be assigned and cannot appear on the left-hand side. Take a look at the following valid and invalid statements −

Augmented Assignment Operators

In addition to the = operator, C allows you to combine arithmetic and bitwise operators with the = symbol to form augmented or compound assignment operator. The augmented operators offer a convenient shortcut for combining arithmetic or bitwise operation with assignment.

For example, the expression "a += b" has the same effect of performing "a + b" first and then assigning the result back to the variable "a".

Run the code and check its output −

Similarly, the expression "a <<= b" has the same effect of performing "a << b" first and then assigning the result back to the variable "a".

Here is a C program that demonstrates the use of assignment operators in C −

When you compile and execute the above program, it will produce the following result −

To Continue Learning Please Login

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Engineering LibreTexts

4.6: Assignment Operator

  • Last updated
  • Save as PDF
  • Page ID 29038

  • Patrick McClanahan
  • San Joaquin Delta College

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Assignment Operator

The assignment operator allows us to change the value of a modifiable data object (for beginning programmers this typically means a variable). It is associated with the concept of moving a value into the storage location (again usually a variable). Within C++ programming language the symbol used is the equal symbol. But bite your tongue, when you see the = symbol you need to start thinking: assignment. The assignment operator has two operands. The one to the left of the operator is usually an identifier name for a variable. The one to the right of the operator is a value.

The value 21 is moved to the memory location for the variable named: age. Another way to say it: age is assigned the value 21.

The item to the right of the assignment operator is an expression. The expression will be evaluated and the answer is 14. The value 14 would assigned to the variable named: total_cousins.

The expression to the right of the assignment operator contains some identifier names. The program would fetch the values stored in those variables; add them together and get a value of 44; then assign the 44 to the total_students variable.

As we have seen, assignment operators are used to assigning value to a variable. The left side operand of the assignment operator is a variable and right side operand of the assignment operator is a value. The value on the right side must be of the same data-type of the variable on the left side otherwise the compiler will raise an error. Different types of assignment operators are shown below:

  • “=” : This is the simplest assignment operator, which was discussed above. This operator is used to assign the value on the right to the variable on the left. For example: a = 10; b = 20; ch = 'y';

If initially the value 5 is stored in the variable a,  then:  (a += 6) is equal to 11.  (the same as: a = a + 6)

If initially value 8 is stored in the variable a, then (a -= 6) is equal to  2. (the same as a = a - 6)

If initially value 5 is stored in the variable a,, then (a *= 6) is equal to 30. (the same as a = a * 6)

If initially value 6 is stored in the variable a, then (a /= 2) is equal to 3. (the same as a = a / 2)

Below example illustrates the various Assignment Operators:

Definitions

 Adapted from:  "Assignment Operator"  by  Kenneth Leroy Busbee , (Download for free at http://cnx.org/contents/[email protected] ) is licensed under  CC BY 4.0

  • Skip to main content
  • Select language
  • Skip to search
  • Assignment operators

An assignment operator assigns a value to its left operand based on the value of its right operand.

The basic assignment operator is equal ( = ), which assigns the value of its right operand to its left operand. That is, x = y assigns the value of y to x . The other assignment operators are usually shorthand for standard operations, as shown in the following definitions and examples.

Simple assignment operator which assigns a value to a variable. The assignment operation evaluates to the assigned value. Chaining the assignment operator is possible in order to assign a single value to multiple variables. See the example.

Addition assignment

The addition assignment operator adds the value of the right operand to a variable and assigns the result to the variable. The types of the two operands determine the behavior of the addition assignment operator. Addition or concatenation is possible. See the addition operator for more details.

Subtraction assignment

The subtraction assignment operator subtracts the value of the right operand from a variable and assigns the result to the variable. See the subtraction operator for more details.

Multiplication assignment

The multiplication assignment operator multiplies a variable by the value of the right operand and assigns the result to the variable. See the multiplication operator for more details.

Division assignment

The division assignment operator divides a variable by the value of the right operand and assigns the result to the variable. See the division operator for more details.

Remainder assignment

The remainder assignment operator divides a variable by the value of the right operand and assigns the remainder to the variable. See the remainder operator for more details.

Exponentiation assignment

This is an experimental technology, part of the ECMAScript 2016 (ES7) proposal. Because this technology's specification has not stabilized, check the compatibility table for usage in various browsers. Also note that the syntax and behavior of an experimental technology is subject to change in future version of browsers as the spec changes.

The exponentiation assignment operator evaluates to the result of raising first operand to the power second operand. See the exponentiation operator for more details.

Left shift assignment

The left shift assignment operator moves the specified amount of bits to the left and assigns the result to the variable. See the left shift operator for more details.

Right shift assignment

The right shift assignment operator moves the specified amount of bits to the right and assigns the result to the variable. See the right shift operator for more details.

Unsigned right shift assignment

The unsigned right shift assignment operator moves the specified amount of bits to the right and assigns the result to the variable. See the unsigned right shift operator for more details.

Bitwise AND assignment

The bitwise AND assignment operator uses the binary representation of both operands, does a bitwise AND operation on them and assigns the result to the variable. See the bitwise AND operator for more details.

Bitwise XOR assignment

The bitwise XOR assignment operator uses the binary representation of both operands, does a bitwise XOR operation on them and assigns the result to the variable. See the bitwise XOR operator for more details.

Bitwise OR assignment

The bitwise OR assignment operator uses the binary representation of both operands, does a bitwise OR operation on them and assigns the result to the variable. See the bitwise OR operator for more details.

Left operand with another assignment operator

In unusual situations, the assignment operator (e.g. x += y ) is not identical to the meaning expression (here x = x + y ). When the left operand of an assignment operator itself contains an assignment operator, the left operand is evaluated only once. For example:

Specifications

Browser compatibility.

  • Arithmetic operators

Document Tags and Contributors

  • JavaScript basics
  • JavaScript first steps
  • JavaScript building blocks
  • Introducing JavaScript objects
  • Introduction
  • Grammar and types
  • Control flow and error handling
  • Loops and iteration
  • Expressions and operators
  • Numbers and dates
  • Text formatting
  • Regular expressions
  • Indexed collections
  • Keyed collections
  • Working with objects
  • Details of the object model
  • Iterators and generators
  • Meta programming
  • A re-introduction to JavaScript
  • JavaScript data structures
  • Equality comparisons and sameness
  • Inheritance and the prototype chain
  • Strict mode
  • JavaScript typed arrays
  • Memory Management
  • Concurrency model and Event Loop
  • References:
  • ArrayBuffer
  • AsyncFunction
  • Float32Array
  • Float64Array
  • GeneratorFunction
  • InternalError
  • Intl.Collator
  • Intl.DateTimeFormat
  • Intl.NumberFormat
  • ParallelArray
  • ReferenceError
  • SIMD.Bool16x8
  • SIMD.Bool32x4
  • SIMD.Bool64x2
  • SIMD.Bool8x16
  • SIMD.Float32x4
  • SIMD.Float64x2
  • SIMD.Int16x8
  • SIMD.Int32x4
  • SIMD.Int8x16
  • SIMD.Uint16x8
  • SIMD.Uint32x4
  • SIMD.Uint8x16
  • SharedArrayBuffer
  • StopIteration
  • SyntaxError
  • Uint16Array
  • Uint32Array
  • Uint8ClampedArray
  • WebAssembly
  • decodeURI()
  • decodeURIComponent()
  • encodeURI()
  • encodeURIComponent()
  • parseFloat()
  • Array comprehensions
  • Bitwise operators
  • Comma operator
  • Comparison operators
  • Conditional (ternary) Operator
  • Destructuring assignment
  • Expression closures
  • Generator comprehensions
  • Grouping operator
  • Legacy generator function expression
  • Logical Operators
  • Object initializer
  • Operator precedence
  • Property accessors
  • Spread syntax
  • async function expression
  • class expression
  • delete operator
  • function expression
  • function* expression
  • in operator
  • new operator
  • void operator
  • Legacy generator function
  • async function
  • for each...in
  • function declaration
  • try...catch
  • Arguments object
  • Arrow functions
  • Default parameters
  • Method definitions
  • Rest parameters
  • constructor
  • element loaded from a different domain for which you violated the same-origin policy.">Error: Permission denied to access property "x"
  • InternalError: too much recursion
  • RangeError: argument is not a valid code point
  • RangeError: invalid array length
  • RangeError: invalid date
  • RangeError: precision is out of range
  • RangeError: radix must be an integer
  • RangeError: repeat count must be less than infinity
  • RangeError: repeat count must be non-negative
  • ReferenceError: "x" is not defined
  • ReferenceError: assignment to undeclared variable "x"
  • ReferenceError: deprecated caller or arguments usage
  • ReferenceError: invalid assignment left-hand side
  • ReferenceError: reference to undefined property "x"
  • SyntaxError: "0"-prefixed octal literals and octal escape seq. are deprecated
  • SyntaxError: "use strict" not allowed in function with non-simple parameters
  • SyntaxError: "x" is a reserved identifier
  • SyntaxError: JSON.parse: bad parsing
  • SyntaxError: Malformed formal parameter
  • SyntaxError: Unexpected token
  • SyntaxError: Using //@ to indicate sourceURL pragmas is deprecated. Use //# instead
  • SyntaxError: a declaration in the head of a for-of loop can't have an initializer
  • SyntaxError: applying the 'delete' operator to an unqualified name is deprecated
  • SyntaxError: for-in loop head declarations may not have initializers
  • SyntaxError: function statement requires a name
  • SyntaxError: identifier starts immediately after numeric literal
  • SyntaxError: illegal character
  • SyntaxError: invalid regular expression flag "x"
  • SyntaxError: missing ) after argument list
  • SyntaxError: missing ) after condition
  • SyntaxError: missing : after property id
  • SyntaxError: missing ; before statement
  • SyntaxError: missing = in const declaration
  • SyntaxError: missing ] after element list
  • SyntaxError: missing formal parameter
  • SyntaxError: missing name after . operator
  • SyntaxError: missing variable name
  • SyntaxError: missing } after function body
  • SyntaxError: missing } after property list
  • SyntaxError: redeclaration of formal parameter "x"
  • SyntaxError: return not in function
  • SyntaxError: test for equality (==) mistyped as assignment (=)?
  • SyntaxError: unterminated string literal
  • TypeError: "x" has no properties
  • TypeError: "x" is (not) "y"
  • TypeError: "x" is not a constructor
  • TypeError: "x" is not a function
  • TypeError: "x" is not a non-null object
  • TypeError: "x" is read-only
  • TypeError: More arguments needed
  • TypeError: can't access dead object
  • TypeError: can't define property "x": "obj" is not extensible
  • TypeError: can't redefine non-configurable property "x"
  • TypeError: cyclic object value
  • TypeError: invalid 'in' operand "x"
  • TypeError: invalid Array.prototype.sort argument
  • TypeError: invalid arguments
  • TypeError: invalid assignment to const "x"
  • TypeError: property "x" is non-configurable and can't be deleted
  • TypeError: setting getter-only property "x"
  • TypeError: variable "x" redeclares argument
  • URIError: malformed URI sequence
  • Warning: -file- is being assigned a //# sourceMappingURL, but already has one
  • Warning: 08/09 is not a legal ECMA-262 octal constant
  • Warning: Date.prototype.toLocaleFormat is deprecated
  • Warning: JavaScript 1.6's for-each-in loops are deprecated
  • Warning: String.x is deprecated; use String.prototype.x instead
  • Warning: expression closures are deprecated
  • Warning: unreachable code after return statement
  • JavaScript technologies overview
  • Lexical grammar
  • Enumerability and ownership of properties
  • Iteration protocols
  • Transitioning to strict mode
  • Template literals
  • Deprecated features
  • ECMAScript 2015 support in Mozilla
  • ECMAScript 5 support in Mozilla
  • ECMAScript Next support in Mozilla
  • Firefox JavaScript changelog
  • New in JavaScript 1.1
  • New in JavaScript 1.2
  • New in JavaScript 1.3
  • New in JavaScript 1.4
  • New in JavaScript 1.5
  • New in JavaScript 1.6
  • New in JavaScript 1.7
  • New in JavaScript 1.8
  • New in JavaScript 1.8.1
  • New in JavaScript 1.8.5
  • Documentation:
  • All pages index
  • Methods index
  • Properties index
  • Pages tagged "JavaScript"
  • JavaScript doc status
  • The MDN project

JS Tutorial

Js versions, js functions, js html dom, js browser bom, js web apis, js vs jquery, js graphics, js examples, js references, javascript assignment, javascript assignment operators.

Assignment operators assign values to JavaScript variables.

Shift Assignment Operators

Bitwise assignment operators, logical assignment operators, the = operator.

The Simple Assignment Operator assigns a value to a variable.

Simple Assignment Examples

The += operator.

The Addition Assignment Operator adds a value to a variable.

Addition Assignment Examples

The -= operator.

The Subtraction Assignment Operator subtracts a value from a variable.

Subtraction Assignment Example

The *= operator.

The Multiplication Assignment Operator multiplies a variable.

Multiplication Assignment Example

The **= operator.

The Exponentiation Assignment Operator raises a variable to the power of the operand.

Exponentiation Assignment Example

The /= operator.

The Division Assignment Operator divides a variable.

Division Assignment Example

The %= operator.

The Remainder Assignment Operator assigns a remainder to a variable.

Remainder Assignment Example

Advertisement

The <<= Operator

The Left Shift Assignment Operator left shifts a variable.

Left Shift Assignment Example

The >>= operator.

The Right Shift Assignment Operator right shifts a variable (signed).

Right Shift Assignment Example

The >>>= operator.

The Unsigned Right Shift Assignment Operator right shifts a variable (unsigned).

Unsigned Right Shift Assignment Example

The &= operator.

The Bitwise AND Assignment Operator does a bitwise AND operation on two operands and assigns the result to the the variable.

Bitwise AND Assignment Example

The |= operator.

The Bitwise OR Assignment Operator does a bitwise OR operation on two operands and assigns the result to the variable.

Bitwise OR Assignment Example

The ^= operator.

The Bitwise XOR Assignment Operator does a bitwise XOR operation on two operands and assigns the result to the variable.

Bitwise XOR Assignment Example

The &&= operator.

The Logical AND assignment operator is used between two values.

If the first value is true, the second value is assigned.

Logical AND Assignment Example

The &&= operator is an ES2020 feature .

The ||= Operator

The Logical OR assignment operator is used between two values.

If the first value is false, the second value is assigned.

Logical OR Assignment Example

The ||= operator is an ES2020 feature .

The ??= Operator

The Nullish coalescing assignment operator is used between two values.

If the first value is undefined or null, the second value is assigned.

Nullish Coalescing Assignment Example

The ??= operator is an ES2020 feature .

Test Yourself With Exercises

Use the correct assignment operator that will result in x being 15 (same as x = x + y ).

Start the Exercise

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Assignment operators (C# reference)

  • 11 contributors

The assignment operator = assigns the value of its right-hand operand to a variable, a property , or an indexer element given by its left-hand operand. The result of an assignment expression is the value assigned to the left-hand operand. The type of the right-hand operand must be the same as the type of the left-hand operand or implicitly convertible to it.

The assignment operator = is right-associative, that is, an expression of the form

is evaluated as

The following example demonstrates the usage of the assignment operator with a local variable, a property, and an indexer element as its left-hand operand:

The left-hand operand of an assignment receives the value of the right-hand operand. When the operands are of value types , assignment copies the contents of the right-hand operand. When the operands are of reference types , assignment copies the reference to the object.

This is called value assignment : the value is assigned.

ref assignment

Ref assignment = ref makes its left-hand operand an alias to the right-hand operand, as the following example demonstrates:

In the preceding example, the local reference variable arrayElement is initialized as an alias to the first array element. Then, it's ref reassigned to refer to the last array element. As it's an alias, when you update its value with an ordinary assignment operator = , the corresponding array element is also updated.

The left-hand operand of ref assignment can be a local reference variable , a ref field , and a ref , out , or in method parameter. Both operands must be of the same type.

Compound assignment

For a binary operator op , a compound assignment expression of the form

is equivalent to

except that x is only evaluated once.

Compound assignment is supported by arithmetic , Boolean logical , and bitwise logical and shift operators.

Null-coalescing assignment

You can use the null-coalescing assignment operator ??= to assign the value of its right-hand operand to its left-hand operand only if the left-hand operand evaluates to null . For more information, see the ?? and ??= operators article.

Operator overloadability

A user-defined type can't overload the assignment operator. However, a user-defined type can define an implicit conversion to another type. That way, the value of a user-defined type can be assigned to a variable, a property, or an indexer element of another type. For more information, see User-defined conversion operators .

A user-defined type can't explicitly overload a compound assignment operator. However, if a user-defined type overloads a binary operator op , the op= operator, if it exists, is also implicitly overloaded.

C# language specification

For more information, see the Assignment operators section of the C# language specification .

  • C# operators and expressions
  • ref keyword
  • Use compound assignment (style rules IDE0054 and IDE0074)

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

Learn Java practically and Get Certified .

Popular Tutorials

Popular examples, reference materials, learn java interactively, java introduction.

  • Get Started With Java
  • Your First Java Program
  • Java Comments

Java Fundamentals

  • Java Variables and Literals
  • Java Data Types (Primitive)

Java Operators

  • Java Basic Input and Output
  • Java Expressions, Statements and Blocks

Java Flow Control

  • Java if...else Statement

Java Ternary Operator

  • Java for Loop
  • Java for-each Loop
  • Java while and do...while Loop
  • Java break Statement
  • Java continue Statement
  • Java switch Statement
  • Java Arrays
  • Java Multidimensional Arrays
  • Java Copy Arrays

Java OOP(I)

  • Java Class and Objects
  • Java Methods
  • Java Method Overloading
  • Java Constructors
  • Java Static Keyword
  • Java Strings
  • Java Access Modifiers
  • Java this Keyword
  • Java final keyword
  • Java Recursion

Java instanceof Operator

Java OOP(II)

  • Java Inheritance
  • Java Method Overriding
  • Java Abstract Class and Abstract Methods
  • Java Interface
  • Java Polymorphism
  • Java Encapsulation

Java OOP(III)

  • Java Nested and Inner Class
  • Java Nested Static Class
  • Java Anonymous Class
  • Java Singleton Class
  • Java enum Constructor
  • Java enum Strings
  • Java Reflection
  • Java Package
  • Java Exception Handling
  • Java Exceptions
  • Java try...catch
  • Java throw and throws
  • Java catch Multiple Exceptions
  • Java try-with-resources
  • Java Annotations
  • Java Annotation Types
  • Java Logging
  • Java Assertions
  • Java Collections Framework
  • Java Collection Interface
  • Java ArrayList
  • Java Vector
  • Java Stack Class
  • Java Queue Interface
  • Java PriorityQueue
  • Java Deque Interface
  • Java LinkedList
  • Java ArrayDeque
  • Java BlockingQueue
  • Java ArrayBlockingQueue
  • Java LinkedBlockingQueue
  • Java Map Interface
  • Java HashMap
  • Java LinkedHashMap
  • Java WeakHashMap
  • Java EnumMap
  • Java SortedMap Interface
  • Java NavigableMap Interface
  • Java TreeMap
  • Java ConcurrentMap Interface
  • Java ConcurrentHashMap
  • Java Set Interface
  • Java HashSet Class
  • Java EnumSet
  • Java LinkedHashSet
  • Java SortedSet Interface
  • Java NavigableSet Interface
  • Java TreeSet
  • Java Algorithms
  • Java Iterator Interface
  • Java ListIterator Interface

Java I/o Streams

  • Java I/O Streams
  • Java InputStream Class
  • Java OutputStream Class
  • Java FileInputStream Class
  • Java FileOutputStream Class
  • Java ByteArrayInputStream Class
  • Java ByteArrayOutputStream Class
  • Java ObjectInputStream Class
  • Java ObjectOutputStream Class
  • Java BufferedInputStream Class
  • Java BufferedOutputStream Class
  • Java PrintStream Class

Java Reader/Writer

  • Java File Class
  • Java Reader Class
  • Java Writer Class
  • Java InputStreamReader Class
  • Java OutputStreamWriter Class
  • Java FileReader Class
  • Java FileWriter Class
  • Java BufferedReader
  • Java BufferedWriter Class
  • Java StringReader Class
  • Java StringWriter Class
  • Java PrintWriter Class

Additional Topics

  • Java Keywords and Identifiers

Java Operator Precedence

Java Bitwise and Shift Operators

  • Java Scanner Class
  • Java Type Casting
  • Java Wrapper Class
  • Java autoboxing and unboxing
  • Java Lambda Expressions
  • Java Generics
  • Nested Loop in Java
  • Java Command-Line Arguments

Java Tutorials

  • Java Math IEEEremainder()

Operators are symbols that perform operations on variables and values. For example, + is an operator used for addition, while * is also an operator used for multiplication.

Operators in Java can be classified into 5 types:

  • Arithmetic Operators
  • Assignment Operators
  • Relational Operators
  • Logical Operators
  • Unary Operators
  • Bitwise Operators

1. Java Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on variables and data. For example,

Here, the + operator is used to add two variables a and b . Similarly, there are various other arithmetic operators in Java.

Example 1: Arithmetic Operators

In the above example, we have used + , - , and * operators to compute addition, subtraction, and multiplication operations.

/ Division Operator

Note the operation, a / b in our program. The / operator is the division operator.

If we use the division operator with two integers, then the resulting quotient will also be an integer. And, if one of the operands is a floating-point number, we will get the result will also be in floating-point.

% Modulo Operator

The modulo operator % computes the remainder. When a = 7 is divided by b = 4 , the remainder is 3 .

Note : The % operator is mainly used with integers.

2. Java Assignment Operators

Assignment operators are used in Java to assign values to variables. For example,

Here, = is the assignment operator. It assigns the value on its right to the variable on its left. That is, 5 is assigned to the variable age .

Let's see some more assignment operators available in Java.

Example 2: Assignment Operators

3. java relational operators.

Relational operators are used to check the relationship between two operands. For example,

Here, < operator is the relational operator. It checks if a is less than b or not.

It returns either true or false .

Example 3: Relational Operators

Note : Relational operators are used in decision making and loops.

4. Java Logical Operators

Logical operators are used to check whether an expression is true or false . They are used in decision making.

Example 4: Logical Operators

Working of Program

  • (5 > 3) && (8 > 5) returns true because both (5 > 3) and (8 > 5) are true .
  • (5 > 3) && (8 < 5) returns false because the expression (8 < 5) is false .
  • (5 < 3) || (8 > 5) returns true because the expression (8 > 5) is true .
  • (5 > 3) || (8 < 5) returns true because the expression (5 > 3) is true .
  • (5 < 3) || (8 < 5) returns false because both (5 < 3) and (8 < 5) are false .
  • !(5 == 3) returns true because 5 == 3 is false .
  • !(5 > 3) returns false because 5 > 3 is true .

5. Java Unary Operators

Unary operators are used with only one operand. For example, ++ is a unary operator that increases the value of a variable by 1 . That is, ++5 will return 6 .

Different types of unary operators are:

  • Increment and Decrement Operators

Java also provides increment and decrement operators: ++ and -- respectively. ++ increases the value of the operand by 1 , while -- decrease it by 1 . For example,

Here, the value of num gets increased to 6 from its initial value of 5 .

Example 5: Increment and Decrement Operators

In the above program, we have used the ++ and -- operator as prefixes (++a, --b) . We can also use these operators as postfix (a++, b++) .

There is a slight difference when these operators are used as prefix versus when they are used as a postfix.

To learn more about these operators, visit increment and decrement operators .

6. Java Bitwise Operators

Bitwise operators in Java are used to perform operations on individual bits. For example,

Here, ~ is a bitwise operator. It inverts the value of each bit ( 0 to 1 and 1 to 0 ).

The various bitwise operators present in Java are:

These operators are not generally used in Java. To learn more, visit Java Bitwise and Bit Shift Operators .

Other operators

Besides these operators, there are other additional operators in Java.

The instanceof operator checks whether an object is an instanceof a particular class. For example,

Here, str is an instance of the String class. Hence, the instanceof operator returns true . To learn more, visit Java instanceof .

The ternary operator (conditional operator) is shorthand for the if-then-else statement. For example,

Here's how it works.

  • If the Expression is true , expression1 is assigned to the variable .
  • If the Expression is false , expression2 is assigned to the variable .

Let's see an example of a ternary operator.

In the above example, we have used the ternary operator to check if the year is a leap year or not. To learn more, visit the Java ternary operator .

Now that you know about Java operators, it's time to know about the order in which operators are evaluated. To learn more, visit Java Operator Precedence .

Table of Contents

  • Introduction
  • Java Arithmetic Operators
  • Java Assignment Operators
  • Java Relational Operators
  • Java Logical Operators
  • Java Unary Operators
  • Java Bitwise Operators

Sorry about that.

Related Tutorials

Java Tutorial

IMAGES

  1. Assignment Operators in Java with Examples

    assignment operators are

  2. Assignment Operators in C

    assignment operators are

  3. Assignment Operators in C Detailed Explanation

    assignment operators are

  4. Assignment Operators in C with Examples

    assignment operators are

  5. Assignment Operators in C Detailed Explanation

    assignment operators are

  6. What are Operators in Java and its Types?

    assignment operators are

VIDEO

  1. ASSIGNMENT OPERATORS

  2. Assignment Operators in Typescript

  3. U 1 Assignment Operators, Relational Operators,Increment and Decrement Operators

  4. #11 Part 2 (Control statements, Looping statements, Popup boxes)

  5. assignment operators in Java icse 9th and 10th class

  6. Chapter 2

COMMENTS

  1. Assignment Operators in Programming

    Assignment operators are used in programming to assign values to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign (=), which assigns the value on the right side of the operator to ...

  2. Assignment operators

    for assignments to class type objects, the right operand could be an initializer list only when the assignment is defined by a user-defined assignment operator. removed user-defined assignment constraint. CWG 1538. C++11. E1 ={E2} was equivalent to E1 = T(E2) ( T is the type of E1 ), this introduced a C-style cast. it is equivalent to E1 = T{E2}

  3. Assignment operators

    The built-in assignment operators return the value of the object specified by the left operand after the assignment (and the arithmetic/logical operation in the case of compound assignment operators). The resultant type is the type of the left operand. The result of an assignment expression is always an l-value.

  4. Assignment operators

    Assignment performs implicit conversion from the value of rhs to the type of lhs and then replaces the value in the object designated by lhs with the converted value of rhs . Assignment also returns the same value as what was stored in lhs (so that expressions such as a = b = c are possible). The value category of the assignment operator is non ...

  5. Assignment Operators in C

    Simple assignment operator. Assigns values from right side operands to left side operand. C = A + B will assign the value of A + B to C. +=. Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand. C += A is equivalent to C = C + A. -=.

  6. C++ Assignment Operators

    Assignment Operators. Assignment operators are used to assign values to variables. In the example below, we use the assignment operator ( =) to assign the value 10 to a variable called x:

  7. C Assignment Operators

    The assignment operators in C can both transform and assign values in a single operation. C provides the following assignment operators: | =. In assignment, the type of the right-hand value is converted to the type of the left-hand value, and the value is stored in the left operand after the assignment has taken place.

  8. 4.6: Assignment Operator

    Different types of assignment operators are shown below: "=": This is the simplest assignment operator, which was discussed above. This operator is used to assign the value on the right to the variable on the left. For example: a = 10; b = 20; ch = 'y'; +=: This operator is combination of '+' and '=' operators. This operator first ...

  9. Assignment operators

    An assignment operator assigns a value to its left operand based on the value of its right operand.. Overview. The basic assignment operator is equal (=), which assigns the value of its right operand to its left operand.That is, x = y assigns the value of y to x.The other assignment operators are usually shorthand for standard operations, as shown in the following definitions and examples.

  10. Assignment operators

    Assignment operators. Assignment operators modify the value of the object. All built-in assignment operators return *this, and most user-defined overloads also return *this so that the user-defined operators can be used in the same manner as the built-ins. However, in a user-defined operator overload, any type can be used as return type ...

  11. Python's Assignment Operator: Write Robust Assignments

    The central component of an assignment statement is the assignment operator. This operator is represented by the = symbol, which separates two operands: A variable ; A value or an expression that evaluates to a concrete value; Operators are special symbols that perform mathematical, logical, and bitwise operations in a programming language.

  12. Python Assignment Operators

    Python Assignment Operators. Assignment operators are used to assign values to variables: Operator. Example. Same As. Try it. =. x = 5. x = 5.

  13. JavaScript Assignment

    Use the correct assignment operator that will result in x being 15 (same as x = x + y ). Start the Exercise. Well organized and easy to understand Web building tutorials with lots of examples of how to use HTML, CSS, JavaScript, SQL, Python, PHP, Bootstrap, Java, XML and more.

  14. Assignment operators

    The assignment operator = is right-associative, that is, an expression of the form. a = b = c is evaluated as. a = (b = c) The following example demonstrates the usage of the assignment operator with a local variable, a property, and an indexer element as its left-hand operand:

  15. Java Operators: Arithmetic, Relational, Logical and more

    2. Java Assignment Operators. Assignment operators are used in Java to assign values to variables. For example, int age; age = 5; Here, = is the assignment operator. It assigns the value on its right to the variable on its left. That is, 5 is assigned to the variable age. Let's see some more assignment operators available in Java.

  16. What are the differences between "=" and "<-" assignment operators?

    The difference in assignment operators is clearer when you use them to set an argument value in a function call. For example: median(x = 1:10) x. ## Error: object 'x' not found. In this case, x is declared within the scope of the function, so it does not exist in the user workspace. median(x <- 1:10)

  17. c++

    The traditional canonical form of the assignment operator looks like this: TestClass& operator=(const TestClass& Other); (you don't want to invoke the copy constructor for assignment, too) and it returns a reference to *this.. A naive implementation would assign each data member individually: